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A key insight of polygraph theory:

Rewriting theory
as a theory of

directed cell complexes

(a kind of combinatorial topology of directed spaces)



Models of cell complexes

To define a model of (directed or non-directed) cell complexes, we
need

1 models of n-cells (and their (n − 1)-boundaries);

2 models of “gluing maps” specifying how n-cells are put
together
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For non-directed cell complexes, we have

point-set models, as CW complexes – cells are closed
topological n-balls Dn ⊆ Rn, gluing maps are continuous maps

combinatorial models, as simplicial sets – cells are
combinatorial simplices, gluing is specified by morphisms in
the simplex category

synthetic models, as higher inductive types – cells are
constructors of identity types, gluing is specified by the type
theory
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Models of directed cell complexes

Passing to directed spaces, we have

point-set models, as used in concurrency theory (pospaces,
dispaces...);

combinatorial models, like presheaf structures for higher
categories (oriented simplicial sets, opetopic sets...);

and also algebraic models, as in the theory of polygraphs,
based on the algebra of strict ω-categories.

Directed type theories may give us synthetic models, but are at a
quite primordial stage...
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Models of directed cell complexes

Two desiderata for a model, wrt rewriting theory:

1 Expressiveness, or a strong pasting theorem.

We should be able to do actual rewriting theory in the model; in
particular, be able to add generators/rewrite steps of the “shapes”
we want, unless there’s a good reason.

Polygraphs are very expressive!

None of the other models are very expressive, rewriting-wise.
Point-set models can do direction only on 1-cells. Typical
combinatorial models are limiting in terms of the shape of
generators.
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Models of directed cell complexes

2 Soundness for the topological interpretation.

From a directed cell complex, we should get a non-directed one
with the same generating cells. A diagram in the directed complex
should correspond to a homotopy in the non-directed complex.

For point-set models, it’s obvious. Combinatorial models
usually have nice geometric realisations that satisfy this.

Polygraphs do not satisfy this: not all gluing maps (modelled
by arbitrary functors of ω-categories) have a sound topological
interpretation.
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Rewriting in weak higher categories

This is related to the fact that strict ω-categories do not model all
homotopy types in the sense of the homotopy hypothesis.

A trade-off in higher category theory:

models with strong pasting theorems (possibility of
diagrammatic rewriting), but no homotopy hypothesis;

models with homotopy hypothesis, but weak pasting theorems
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Rewriting in weak higher categories

Diagrammatic sets want to have both, and be a bridge between
higher-dimensional rewriting and homotopy theory.

Technically indebted to:

works on poset topology from the 1980s (Björner, Wachs);

works on pasting presentations of ω-categories in the late
1980s, early 1990s, especially Steiner’s The algebra of directed
complexes;

a notorious Kapranov–Voevodsky 1991 paper (name is due to
them)
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and to a higher-categorical pasting diagram its oriented face poset.



Face posets

We can associate to a cell complex its face poset...

>

a b

0 1

− +

−

−

+

+

0 1

b

a

b

a

> >

and to a higher-categorical pasting diagram its oriented face poset.



Face posets

Regular CW complex X : gluing maps are homeomorphisms with
their image

A classical theorem of combinatorial topology

A regular CW complex is specified up to cellular homeomorphism
by its face poset.

Regular CW complexes are essentially combinatorial objects.

The face poset of a regular CW n-ball is
a combinatorial model of an n-cell.
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Face posets

The diagrammatic set model of directed cell complex:

Directed n-cells are modelled by regular directed complexes

(oriented face posets of pasting diagrams, whose

underlying poset is the face poset of a regular CW complex)

with a greatest element of rank n

(so the underlying poset is the face poset of a regular CW n-ball)

These have realisations both in ω-categories and in spaces

Gluing is given by maps of posets that are compatible
functorially with both realisations
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Directed complexes

An orientation on a finite poset P is an edge-labelling
o : H P1 → {+,−} of its Hasse diagram.

An oriented graded poset is a finite graded poset with an
orientation.

If U ⊆ P is (downward) closed, α ∈ {+,−}, n ∈ N,

∆α
nU := {x ∈ U |dim(x) = n and if y ∈ U covers x , then o(y → x) = α},
∂αn U := cl(∆α

nU) ∪ {x ∈ U | for all y ∈ U, if x ≤ y , then dim(y) ≤ n},
∆nU := ∆+

n U ∪∆−n U, ∂nU := ∂+
n U ∪ ∂−n U.
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Directed complexes

If U is a closed subset of P, then U is a molecule if either

U has a greatest element, in which case we call it an atom, or

there exist molecules U1 and U2, both properly contained in U, and
n ∈ N such that U1 ∩ U2 = ∂+

n U1 = ∂−n U2 and U = U1 ∪ U2.

An oriented graded poset P is a directed complex if, for all x ∈ P and
α, β ∈ {+,−}, if n = dim(x),

1 ∂αx is a molecule, and

2 ∂α(∂βx) = ∂αn−2x .
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Regular directed complexes

An n-dimensional molecule U in a directed complex has spherical
boundary if, for all k < n,

∂+
k U ∩ ∂

−
k U = ∂k−1U.

A directed complex is regular if all atoms have spherical boundary.

The geometric realisation∗ of a regular directed complex P is a
regular CW complex with one cell for each atom of P.

∗simplicial nerve of poset + realisation of simplicial sets
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but not



C-directed complexes

More in general, let C be a class of molecules closed under isomorphism,
boundaries, and inclusion of atoms, and included in the class S of
(regular) molecules with spherical boundary.

A C-directed complex is a directed complex whose atoms are all in C.
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Morphisms of directed complexes

A map f : P → Q of C-directed complexes is a function that satisfies

∂αn f (x) = f (∂αn x)

for all x ∈ P, n ∈ N, and α ∈ {+,−}.

A map factors essentially uniquely as a surjection followed by an inclusion.

Let f : P → Q be a map. Then f is a closed, order-preserving,
dimension-non-increasing function of the underlying posets.
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Morphisms of directed complexes

A C-functor f : P # Q of C-directed complexes is a function
f : C`(P)→ C`(Q) such that

1 f preserves all unions and binary intersections,

2 ∂αn f (cl{x}) = f (∂αn x), and

3 f (cl{x}) is a C-molecule

for all x ∈ P, n ∈ N, and α ∈ {+,−}.

A class C is algebraic if C-functors compose. We assume that C is
algebraic.

A C-functor factors e.u. as a subdivision followed by an inclusion.
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Morphisms of directed complexes

A span of inclusions of subcategories:

DCpxC

DCpxCin

DCpxCfun



Convenient classes

Let C ⊆ S be an algebraic class of molecules with spherical boundary.

We say that C is a convenient if it satisfies the following axioms:

1 C contains •;

2 if U ∈ C and J ⊆ N \ {0}, then DJU ∈ C;

3 if U,V ∈ C and U ⇒ V is defined, then U ⇒ V ∈ C;

4 if U1,U2 ∈ C and the pasting U1 ∪ U2 along V v ∂αU2 is defined,
then U1 ∪ U2 ∈ C;

5 if U,V ∈ C, then U ⊗V ∈ C and U ?V ∈ C;

6 if U ∈ C and V ⊆ ∂U is a closed subset, then O1⊗U/∼V ∈ C.

The class S is convenient!
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Diagrammatic sets

We fix a convenient class of molecules C.

We write (atom) for a skeleton of the full subcategory of DCpxC

on the atoms of every dimension.

A diagrammatic set X is a presheaf on .

The Yoneda embedding ↪→ Set extends to an embedding
DCpxC ↪→ Set.

A diagram of shape U in X is a morphism x : U → X where
U is a molecule.

It is composable if U ∈ C, and a cell if U is an atom.



Diagrammatic sets

We fix a convenient class of molecules C.

We write (atom) for a skeleton of the full subcategory of DCpxC

on the atoms of every dimension.

A diagrammatic set X is a presheaf on .

The Yoneda embedding ↪→ Set extends to an embedding
DCpxC ↪→ Set.

A diagram of shape U in X is a morphism x : U → X where
U is a molecule.

It is composable if U ∈ C, and a cell if U is an atom.



Diagrammatic sets

We fix a convenient class of molecules C.

We write (atom) for a skeleton of the full subcategory of DCpxC

on the atoms of every dimension.

A diagrammatic set X is a presheaf on .

The Yoneda embedding ↪→ Set extends to an embedding
DCpxC ↪→ Set.

A diagram of shape U in X is a morphism x : U → X where
U is a molecule.

It is composable if U ∈ C, and a cell if U is an atom.



Diagrammatic sets

We fix a convenient class of molecules C.

We write (atom) for a skeleton of the full subcategory of DCpxC

on the atoms of every dimension.

A diagrammatic set X is a presheaf on .

The Yoneda embedding ↪→ Set extends to an embedding
DCpxC ↪→ Set.

A diagram of shape U in X is a morphism x : U → X where
U is a molecule.

It is composable if U ∈ C, and a cell if U is an atom.



Diagrammatic sets

We fix a convenient class of molecules C.

We write (atom) for a skeleton of the full subcategory of DCpxC

on the atoms of every dimension.

A diagrammatic set X is a presheaf on .

The Yoneda embedding ↪→ Set extends to an embedding
DCpxC ↪→ Set.

A diagram of shape U in X is a morphism x : U → X where
U is a molecule.

It is composable if U ∈ C, and a cell if U is an atom.



Diagrammatic sets

We fix a convenient class of molecules C.

We write (atom) for a skeleton of the full subcategory of DCpxC

on the atoms of every dimension.

A diagrammatic set X is a presheaf on .

The Yoneda embedding ↪→ Set extends to an embedding
DCpxC ↪→ Set.

A diagram of shape U in X is a morphism x : U → X where
U is a molecule.

It is composable if U ∈ C, and a cell if U is an atom.



Diagrammatic sets

A diagrammatic complex is a diagrammatic set X together with a set
X =

∑
n∈N Xn of generating cells such that, for all n ∈ N,∐

x∈Xn
∂U(x)

σ≤nXσ≤n−1X

∐
x∈Xn

U(x)

(x)x∈Xn

is a pushout in Set.

This is our model of a directed cell complex.
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Homotopical soundness (and completeness)

The geometric realisation of DCpxC extends to a geometric
realisation of Set, with a right adjoint S .

The realisation of a diagrammatic complex (X ,X ) is a CW
complex with one generating cell for each cell in X .

The right adjoint functor S has a homotopical left inverse (is
homotopically faithful).

Moreover, the sequence of homotopy groups of a space X can
be read from a combinatorially defined sequence of homotopy
groups of SX .
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Comparison with polygraphs

A “soft” claim: for practical purposes, polygraphs and
diagrammatic complexes are very similar.

The main caveat is that we cannot introduce generators of type
x ⇒ y where x and y are not composable diagrams.

(for C = S, “do not have spherical boundary”)

But we can use units and degeneracies, produced by surjective
maps in , to “fatten them up” until they have spherical boundary.

The price we pay for homotopical soundness is that “empty space”
(sometimes) has to be explicitly handled.



Comparison with polygraphs

A “soft” claim: for practical purposes, polygraphs and
diagrammatic complexes are very similar.

The main caveat is that we cannot introduce generators of type
x ⇒ y where x and y are not composable diagrams.

(for C = S, “do not have spherical boundary”)

But we can use units and degeneracies, produced by surjective
maps in , to “fatten them up” until they have spherical boundary.

The price we pay for homotopical soundness is that “empty space”
(sometimes) has to be explicitly handled.



Comparison with polygraphs

A “soft” claim: for practical purposes, polygraphs and
diagrammatic complexes are very similar.

The main caveat is that we cannot introduce generators of type
x ⇒ y where x and y are not composable diagrams.

(for C = S, “do not have spherical boundary”)

But we can use units and degeneracies, produced by surjective
maps in , to “fatten them up” until they have spherical boundary.

The price we pay for homotopical soundness is that “empty space”
(sometimes) has to be explicitly handled.



Comparison with polygraphs

A “soft” claim: for practical purposes, polygraphs and
diagrammatic complexes are very similar.

The main caveat is that we cannot introduce generators of type
x ⇒ y where x and y are not composable diagrams.

(for C = S, “do not have spherical boundary”)

But we can use units and degeneracies, produced by surjective
maps in , to “fatten them up” until they have spherical boundary.

The price we pay for homotopical soundness is that “empty space”
(sometimes) has to be explicitly handled.



Comparison with polygraphs

It is useful to introduce two related structures.

In the span

DCpxC

DCpxCin

DCpxCfun

the two functors preserve the set Γ of colimit diagrams containing
the initial object and all pushouts of inclusions.

Set is equivalent to the category PShΓ(DCpxC) of Γ-continuous
presheaves on DCpxC .
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PolC is a category of “combinatorial C-polygraphs” (only
faces, no units or compositions)
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Comparison with polygraphs

Conjecture

Combinatorial S-polygraphs are equivalent to Simon Henry’s
regular polygraphs, and

Non-unital S-ω-categories to his regular ω-categories.

Prima facie, the presence of non-trivial units in diagrammatic
sets destroys computational properties of a rewrite system.
 Computational analyses should be relative to
sub-presheaves of the underlying combinatorial polygraph.

Taking the “free non-unital ω-category” is a way of capturing
the transitive closure of the rewrite relation
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Equivalences and weak composites

Need a model of weak higher categories as “semantic universe”.

There is a natural coinductive definition of
equivalence diagram in a diagrammatic set.

A diagrammatic set where every composable diagram is
connected by an equivalence to a single cell
— its “weak composite” —
is a reasonable notion of weak ω-category.

If C = S, we can interpret every regular diagram
and compose every diagram with spherical boundary.



Equivalences and weak composites

Need a model of weak higher categories as “semantic universe”.

There is a natural coinductive definition of
equivalence diagram in a diagrammatic set.

A diagrammatic set where every composable diagram is
connected by an equivalence to a single cell
— its “weak composite” —
is a reasonable notion of weak ω-category.

If C = S, we can interpret every regular diagram
and compose every diagram with spherical boundary.



Equivalences and weak composites

Need a model of weak higher categories as “semantic universe”.

There is a natural coinductive definition of
equivalence diagram in a diagrammatic set.

A diagrammatic set where every composable diagram is
connected by an equivalence to a single cell
— its “weak composite” —
is a reasonable notion of weak ω-category.

If C = S, we can interpret every regular diagram
and compose every diagram with spherical boundary.



Equivalences and weak composites

Need a model of weak higher categories as “semantic universe”.

There is a natural coinductive definition of
equivalence diagram in a diagrammatic set.

A diagrammatic set where every composable diagram is
connected by an equivalence to a single cell
— its “weak composite” —
is a reasonable notion of weak ω-category.

If C = S, we can interpret every regular diagram
and compose every diagram with spherical boundary.



Equivalences and weak composites

Need a model of weak higher categories as “semantic universe”.

There is a natural coinductive definition of
equivalence diagram in a diagrammatic set.

A diagrammatic set where every composable diagram is
connected by an equivalence to a single cell
— its “weak composite” —
is a reasonable notion of weak ω-category.

If C = S, we can interpret every regular diagram
and compose every diagram with spherical boundary.



Equivalences and weak composites

If (x1, x2)⇒ 〈x1, x2〉 exhibits 〈x1, x2〉 as a weak composite:

x1 x2

y '

∀

x1 x2

〈x1, x2〉

z

∃

And this equivalence should be witnessed by 3-dimensional
equivalence diagrams...

whose definition involves 4-dimensional equivalence diagrams, etc
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Equivalences and weak composites

Properties of equivalences:

All degenerate composable diagrams are equivalences.

Equivalences are closed under higher equivalence.

The relation “x ' y iff there is an equivalence e : x ⇒ y” is
an equivalence relation.

Equivalences coincide with weakly invertible diagrams.

Morphisms of diagrammatic sets preserve equivalences.

If X is a space, every diagram in SX is an equivalence.
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Now, if there is time, an application
(from the more recent paper)



The smash product of pointed spaces

Let (X , •X ) and (Y , •Y ) be (nice*) pointed topological spaces.
*A standard choice is compactly generated Hausdorff

The smash product (X , •X ) ∧ (Y , •Y ) is obtained from X × Y by
quotienting the fibres of •X , •Y down to a point.

It is part of a symmetric monoidal closed structure on cgHaus•.
The monoidal unit is the coproduct 1 + 1 pointed with one of the
coproduct inclusions.
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Gray product and smash product

Let P,Q be oriented graded posets.
We take their cartesian product as posets.

We give it an orientation
as in the tensor product of chain complexes.

If P and Q are regular directed complexes
we obtain a regular directed complex P ⊗Q,

the Gray product of P and Q.

This is part of a monoidal structure on DCpxC ,
which restricts to ,

then extends to a monoidal biclosed structure on Set.
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Gray product and smash product

The Gray product is semicartesian on Set (the unit is terminal),
so X ⊗Y is fibred over X and Y .

This allows us to define a (Gray) smash product (X , •X ) ? (Y , •Y )
of pointed diagrammatic sets,
part of a monoidal biclosed structure on Set•.
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Gray product and smash product

The adjunction relating Set and cgHaus lifts to an adjunction
between Set• and cgHaus•.

Theorem

1 The realisation | − | : Set→ cgHaus sends Gray products to
cartesian products.

2 The realisation | − | : Set• → cgHaus• sends smash
products to smash products.
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Props

A (coloured) prop is a

symmetric strict (small) monoidal category T

whose objects are freely generated from a set T of sorts.

Morphisms ϕ : (a1, . . . , an)⇒ (b1, . . . , bm)
∼

Operations with n inputs and m outputs

a2
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Props

A model of (T ,T ) in a symmetric monoidal category M is a
symmetric monoidal functor T →M.

Models of (T ,T ) in M form a category ModM(T ,T ) with
monoidal natural transformations as morphisms.

This category admits a symmetric monoidal structure.

(Idea: “run operations in parallel”, use symmetry

to redistribute inputs and outputs as needed)
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The tensor product of props

We can consider models of (S ,S ) in ModM(T ,T ).

The tensor product (T ,T )⊗S (S ,S ) is determined universally by
the requirement that

models of (T ,T )⊗S (S ,S ) in M

correspond naturally to

models of (S ,S ) in ModM(T ,T ).
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The external product of pros is a smash product

Theorem

The diagram of functors

Pro× Pro Prob

Set• × Set• Set•

GrayCatN× N

−⊗−

−? (−)◦

U3

G

commutes up to natural isomorphism.



Higher-dimensional cells

Some observations:

The realisation of a smash product in probs loses
information: cells of dimension n > 3 become equations of
cells in a prob.

Because N is full and faithful, we can replace N(T ,T ) with
any other X such that PX ' (T ,T ).
For example X could be a presentation with oriented 3-cells
with nice computational properties.

If X and Y have interesting oriented n-cells, then X ?Y has
interesting oriented k-cells up to k = 2n!
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Then X ?X is a presentation of Mon⊗Monco, the theory of
bialgebras.
It has the following “new” critical branching:

µµα1
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Towards compositional higher rewriting

Question:

If we start from presentations with nice
computational properties or nice

homotopical properties,

do we obtain nice presentations of their tensor product?


