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Categorification and decategorification

» Categorification is a concept introduced by Crane and Frenkel in low dimensional topology. It consists in
replacing set theoretic notions by categorical ones:

Set Theory H Category Theory
set category
element object
relation between elements morphism of objects
function functor
relation between functions || natural transformation of functors

» Obtain a richer structure to deduce new properties from the original one.
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» Example: Category Vectx of K-vector spaces. Then Ko(Vectx) = Z. Indeed, consider the map
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Categorification and decategorification

» Gradings: Let R be a Z-graded ring. Consider the category R — gMod of graded R-modules
{1} the shift of grading:
For M=(P M, (M{1}); = Mj;1.
i€z
> If Ais an additive category of graded R-modules closed under {£1}, the group Ko(A) is a
Z[q, g~ *]-module via

¢'[M] = [M{=i}].

. Denote by
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> If Ais an additive category of graded R-modules closed under {£1}, the group Ko(A) is a
Z[q, g~ *]-module via
q'[M] = [M{-i}].

> If A= @ A;; admits a 1-categorical structure, one will categorify A using an additive 2-category, that is
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a 2-category A such that for every 0-cells x and y, A(x,y) is an additive category.

» The Grothendieck group of an additive 2-category A is the 1-category Ko(A) whose:
» 0-cells are the 0-cells of A,
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Categorification and decategorification

v

Gradings: Let R be a Z-graded ring. Consider the category R — gMod of graded R-modules. Denote by
{1} the shift of grading:
For M=(P M, (M{1}); = Mj;1.
i€z
> If Ais an additive category of graded R-modules closed under {£1}, the group Ko(A) is a
Z[q, g~ *]-module via

¢'[M] = [M{=i}].

> If A= @ A;; admits a 1-categorical structure, one will categorify A using an additive 2-category, that is
ijel
a 2-category A such that for every 0-cells x and y, A(x,y) is an additive category.
» The Grothendieck group of an additive 2-category A is the 1-category Ko(A) whose:
» 0-cells are the 0-cells of A,

» 1-cells with source A and target B are the elements of Ko(.A1(A, B)). Composition of 1-cells is defined by
[flo[g] = [f %o g] for all f € A1(A, B), g € A1(B, C).

> Given the algebra A= @ A, one will construct a 2-category .4 with 0-cells the elements of / and such
ijel
that the 1-categories .A(/,) are in correspondence with the A;;. Then, prove that

A= Ko(A).

» Proving such an isomorphism is a difficult task in general. A relevant question to do so is to compute

bases for the spaces of morphisms of A.
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Linear bases from convergence

> Example: Associative algebra A presented by generators X = {x, y} and relations R = {x* = xy}
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Monoidal categories

» A monoidal category is a 1-category (Co,C1) equipped with
» a functor ® : C x C — C called tensor product,
> a unit object 1 € Cy, called unit object,

» a natural isomorphism a satisfying
id
exexc2% exe

cC®C —®> C
> natural isormorphisms X\ and p satisfying
1xid id®1
1xC CcxcC Cx1
C

where 1 is the 1-category with one object e and one morphism id,, that are sent via 1 onto 1 and idz.
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> a unit object 1 € Cy, called unit object,

» a natural isomorphism a satisfying
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cC®C —®> C
> natural isormorphisms X\ and p satisfying
1xid id®1
1xC CcxcC Cx1
C

where 1 is the 1-category with one object e and one morphism id,, that are sent via 1 onto 1 and idz.

» For every objects x, y, z € Co, there are isomorphisms

Ay (XRy)Rz—=>xQ(y®z), MA:1@x—x, pe:x®1—x.

» A monoidal category is strict when the natural isomorphisms a, A and p are identities.

» Composition of morphism and tensor products in a monoidal category satisfy exchange law, that is for

every f,g, h, k € Cy,
(fe@g)o(h®k)=(fog)®(gok).
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Linear categories

> Let V= (V,®,1,a,\ p) be a monoidal category. A category enriched over V is a category C = (Co,C1)
such that:

> for every x,y € Co, C(x,y) := Home(x, y) is an object of V,
> for every x,y,z € Co; ox,y,z : C(x,y) ® C(y, z) is a morphism of V,

> for every x € Cp, tx : 1 — C(x, x) is @ morphism of V.
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> A K-linear category is a category enriched over (Vectk, ®,K, a, \, p), that is for every x,y € Co, C(x,y)

is a K-vector space, and composition of morphisms C(x, y) x C(y, z) = C(x, z) is bilinear:

fo(Ag+ puh) = XAfog)+ pu(foh).
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such that:

> for every x,y € Co, C(x,y) := Home(x, y) is an object of V,
> for every x,y,z € Co; ox,y,z : C(x,y) ® C(y, z) is a morphism of V,

> for every x € Cp, tx : 1 — C(x, x) is @ morphism of V.

such that the following diagrams commute in V:
(C(x.y) ®Cly.2) @ C(z.1) )
_—
C(x,z) ®@C(z,t) C(x,2) ® (C(y,z) ® C(z, 1))

Ox,z,t

0x,y,2id

id®oy‘zwt

C(x, t)

C(x,y)®Cl(y, 2)

Ox,y,t

C(x,y)®@C(y,y) *>ny <7CXX ) ®C(x,y)

PN

C(x,y)® 1®C(x,y)

> A K-linear category is a category enriched over (Vectk, ®,K, a, \, p), that is for every x,y € Co, C(x,y)
is a K-vector space, and composition of morphisms C(x, y) x C(y, z) = C(x, z) is bilinear:

fo(Ag+ puh) = XAfog)+ pu(foh).

» A K-linear monoidal category is a monoidal category in which the tensor product of morphisms
®:C(x,y) xC(z,t) = C(x ® z,y ® t) is K-bilinear:

f®(A\g+uh)=Xf®g)+pu(f @ h).
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Linear 2-categories

1.

> Recall that a 2-category is a category enriched over (Caty, X, o ). Explicitely, we have a set Co of
objects, and for p, g € Co, C(p, q) is a 1-category.

» objects of C(p, q) are 1-cells with source p and target q. We denote by C; the set of all 1-cells.

» morphisms of C(p, q) are 2-cells of C. We denote by C» the set of all 2-cells.

9/41



Linear 2-categories

1.

> Recall that a 2-category is a category enriched over (Caty, X, o ). Explicitely, we have a set Co of

objects, and for p, g € Co, C(p, q) is a 1-category.

» objects of C(p, q) are 1-cells with source p and target q. We denote by C; the set of all 1-cells.

» morphisms of C(p, q) are 2-cells of C. We denote by C» the set of all 2-cells.

» There are two compositions in a 2-category:

> These compositions satisfy the exchange law: for every f,f' g, g’ in Ca:

(Fr1f') %0 (g *18") = (f %0 &) %1 (f' %0 &)

fx1g

TN
ol

9/41



Linear 2-categories

1.

> Recall that a 2-category is a category enriched over (Caty, X, o ). Explicitely, we have a set Co of
objects, and for p, g € Co, C(p, q) is a 1-category.

» objects of C(p, q) are 1-cells with source p and target q. We denote by C; the set of all 1-cells.

» morphisms of C(p, q) are 2-cells of C. We denote by C» the set of all 2-cells.

» There are two compositions in a 2-category:

X/jf\*y/lg\*z B /ﬂ"_\ m /Mf_\

> These compositions satisfy the exchange law: for every f,f' g, g’ in Ca:

(Fr1f') %0 (g *18") = (f %0 &) %1 (f' %0 &)

1.
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> A K-linear 2-category is a category enriched over (Alg,, x, o )., where Alg; is the category of linear
1-categories.
» For every p,q € C1, C(p, q) is a K-vector space: for any f,g € C(p,q), \f + ng € C2(p, q).
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String diagrams

> 2-cells of a (K-linear) 2-category can be depicted using string diagrams, or circuits, as follows:

g

» Convention : We read string diagrams from right to left, and from bottom to top.
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String diagrams

> 2-cells of a (K-linear) 2-category can be depicted using string diagrams, or circuits, as follows:

g

» Convention : We read string diagrams from right to left, and from bottom to top.

» More generally,

&m* 8281 &m &3 &2 &1
&2 &1
w
&2 81 w2 w1
w c
y a([ X ~ y oo X o ~ z % X
z S
fa f1 Y1
z
f2 f1
fpoo-fafy fn 2 A

» We do not draw identity 1-cells in string diagrams:
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String diagrams

» Examples: x ﬂa
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String diagrams

g 1x X
g
> Examples: x/ﬂ\a\x ~ i o xy/ﬂa\x ~ /;\a
\/ X ‘\g\ y 4/f ¢ p
1x

» Compositions with string diagrams:

g

o
>

AN N

£

-
-

£
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String diagrams

g 1x X
g
> Examples: x/ﬂ\a\x ~ i o xy/ﬂa\x ~ /;\a
\/ X ;\ y 4/f ¢ p
1x

» Compositions with string diagrams:

g

’ g h
VAN N\ z |y /N ’
: /H\B g /H\a x e . “ Y g x Vo & X
W
f £

h

LY
o

NN

£

o

f

» Because identity 2-cells can be removed from composites using the identity axioms, we do not draw
identity 2-cells.

» More examples:

1, 1, B
m m /\ .ﬁ x
B B8 ﬂ\l
y z y k x y z y ul x g <z>
g f g f /ﬂ\ k
W ﬂa \lk/
«
h h k ‘
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String diagrams

» Exchange law in terms of string diagrams:

g g

VAN AN L ADED

£ f f! f

[
[

[
[

N
<
x
I
™
R
|

‘\
-
-
-
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String diagrams

» Exchange law in terms of string diagrams:

g g g

!

[
[

ﬁ
-
s
-

-
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Cyclic 2-cells and pivotal categories

» Let C be a linear 2-category. If p is a 1-cell, a left-adjoint of p is a 1-cell p such that there are 2-cells

p p
T]p21:>p*o[3, Eplﬁ*op:>1, s p 5 s.t. m: ‘7 m =

P p p

e
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» If p is moreover a right-adjoint of p, we say that they are biadjoint and we also have
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» If p is moreover a right-adjoint of p, we say that they are biadjoint and we also have
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p p p

» A 2-cell u: p= gqis cyclic with respect to some biadjunction (p, ). (q, §) if

P p
g

o>

e

> A 2-category is pivotal if every 1-cell admits a left and right adjoint p, and every 2-cell f : p = g is cyclic

w.r.t biadjunctions (p, p), (g, §).
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Cyclic 2-cells and pivotal categories

» Let C be a linear 2-category. If p is a 1-cell, a left-adjoint of p is a 1-cell p such that there are 2-cells

pop
Np:1=p*o P, €p:Pprop=1, s St m: ‘7 m =

P P p

e

» If p is moreover a right-adjoint of p, we say that they are biadjoint and we also have

U (U] U)
p

p p p

» A 2-cell u: p= gqis cyclic with respect to some biadjunction (p, ). (q, §) if

P p
g

> A 2-category is pivotal if every 1-cell admits a left and right adjoint p, and every 2-cell f : p = g is cyclic

o>

w.r.t biadjunctions (p, p), (g, §).

» Fact: In a pivotal 2-category, two string diagrams that are equal up to isotopy represent the same 2-cell.
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II. Diagrammatic rewriting and

linear (3,2)-polygraphs
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Diagrammatic algebras

» Objective: study presentations of diagrammatic algebras and categories.
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» Example: Let K be a field. The nilHecke algebra NH, of degree n is the K-algebra presented by

» generators x; for 1 < i< nand 1 forl <i<n;

> relations :
XiXj = XjX;

Tixj = x;Ti s [i—j|>1
Ty =TT si|i—j|>1
Tl-z =0
TiTi41Ti = Ti+1TiTig1
XiTj — TiXiy1 = 1

TiXj — Xi+17Ti =1
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15/ 41



Diagrammatic algebras

» Objective: study presentations of diagrammatic algebras and categories.
» Example: Let K be a field. The nilHecke algebra NH, of degree n is the K-algebra presented by

» generators x; for 1 < i< nand 1 forl <i<n;
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1 i n 1 i i+l n
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XiXj = XjX;
Tixj = x;i s |[i—j| >1
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TiTip1Ti = Tip1TiTis1

XiTi — TiXjy1 = 1

TiXj = X171 = 1
» More economic way to study these algebras: realize them as 2-morphism spaces of a linear 2-category.
> Let us define the nilHecke 2-category N'H by
> NHo = {e},
> NHi = {n € N} (number of strands on sources and targets),

» N'Hs contains K-linear combinations of diagrams made of crossings and dots, subject to the local relations

o BT sorsen | s
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» More economic way to study these algebras: realize them as 2-morphism spaces of a linear 2-category.

> Let us define the nilHecke 2-category N'H by NH, ~ Enda(n) ‘

> NHo = {e},
> NHi = {n € N} (number of strands on sources and targets),

» N'H> contains K-linear combinations of diagrams made of crossings and dots, subject to the local relations
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Presentations of linear 2-categories

» Linear 2-categories are presented by linear (3,2)-polygraphs, that are quadruples (Po, P1, P2, P3) made of
> a 1-polygraph (Po, P1), on which we construct the free 1-category Py,

» a cellular extension
S1

P> _)’
t1

P

of generating 2-cells/diagrammatic pieces.
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linear 2-category presented by P For any parallel 1-cells p, g of C, the set of monomials in normal form
w.r.t P with 1-source p and 1-target g is a linear basis of C2(p, q).

> We need to find criteria to prove termination of linear (3,2)-polygraphs, and then confluence is a check
of critical branchings.
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» The linear 2-polygraph (e, {x, y, z}, {xyz = zxy + yx}) is terminating using the degree lexicographic orde
onx>y>z.

» Such an order is difficult to define for linear 2-categories, because of the operations xp and ;.

»> Example : Take A = K][S3], and the relation

> Count the number of s with s = x | , t= | >< This doesn’t work in A/H since we can plug
diagrams on the left and right.

» The correct setting to define these orders is the one of derivations, as introduced by Guiraud '04 and
Guiraud-Malbos '09.
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descending current in input:
f<g iff d(f)<d(g).

» We extend this to polynomials by setting

f <g iff d(f) < d(h) for any monomial hin g.

» Given a 2-category C, define the category of contexts C[C] of C by:

» 0-cells: 2-cells of C,

> 1-cells from f to g: contexts ((s1(f), t1(f)), ¢) such that c[f] = g:

» A C-module is a functor M : C[C] — Ab, where Ab is the category of abelian groups. 2 an



Modules for 2-categories

» Exemple: In the case of 2-categories, we construct prototypical modules. Let Ord be the 2-category with
one 0-cell, 1-cells are partially ordered sets, and 2-cells are monotone maps.

» Fix an internal abelian group G in Ord, and X : C — Ord, Y : C°® — Ord two 2-functors.
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» We define a C-module Mx vy ¢ as follows:
> A2cell u: p= qissent to M(u) = Ord(X(p) X Y(q),G),

> If p,g € C1 and c is a context from u: p =g to p’ xo ux*o q’:
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y Uu z T x———y Uu —T o
q q

X(p') x X(p) x X(¢') x Y(p') x Y(q) X Y(q') = G

M(c) : (a: X(p) x Y(q) = G) in Ord — { X, 5, X",y v, y") = a(x, y).

> Ifu:p’ = pand w:q=q are 2-cells, and c is a context from v : p = g to u*1 v x1 w:

P Y
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\_q/

L i X(p') > Y(@) — G
M) (2: X(p) x ¥(g) = €) in Ord 5 { (x,y) > a(X () (), Y (@) ().

» When C = Py is freely generated by a 2-polygraph, such a C-module is uniquely determined by X(p) and
Y (p) for p € P1 and morphisms X(u) : X(p) — X(q) and Y (u) : Y(q) — Y(p) forevery u: p=-q € P.
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Termination using derivations

» A derivation of a 2-category C into a C-module M is a map sending every 2-cell v in C to an element
d(u) € M(u) such that
d(uxjv)=uxid(v)+d(u)*iv,
where u*; d(v) = M(u*; O)(d(v)) and d(u) i v = M(O *; v)(d(u)).
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» A derivation of P into the P;-module Mx y ¢ such that for every 2-cell of u € P, we have d(u) > 0, and
for every generating 3-cell v in P3, d(s2(a)) > d(h) for every monomial h in t2(c).

Then the linear (3,2)-polygraph P terminates.

> In general, we consider G = Z and Y to be the trivial 2-functor, that is Y (p) = @ for any p € Py, and
Y (u) is the trivial map Y(q) = Y(p) for u: p=q € P-.

> One might forget about the Y in the definition of Mx y ¢:

arr: (X(p) x X(p) x X(q') = G, (X', x,x") = a(x))  ar> (X(P') = G, (x,y) = a(X(p')(x))) -
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Termination using derivations: an example

> Steps of derivation: Let P = (Po, P1, P>, P3) be a linear (3,2)-polygraph with P = AU B, functors X,
Y and a derivation d such that

X(s2(f)) > X(h), Y(s2(f)) > Y(h), d(s2(f)) > d(h) for f e A, h monomial in t2(f) and
d(s2(g)) > d(k) for g € B and k monomial in t2(b).

Then P terminates if P’ = (P, P1, P2, B) terminates.
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Termination using derivations: an example

» Recall that

X( ><)(n7m) =(mn+1) d( ><)(n7 m) = m.

» Compute the values of d(s2(B)) and d(t2(B)):

d( tj>%)(n,m7 k)
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=m+ 2k.

d(;é)(n,m) =d( ><)(n, m) +d( ><)(m,n+1) =n+m+1.

» Therefore, X and d satisfy the required conditions, and the linear (3, 2)-polygraph of permutations is

terminating.
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Example: Khovanov-Lauda-Rouquier (KLR) algebras

> These algebras appear in the process of categorifying a quantum groupe Uy(g) associated with a
symmetrizable Kac-Moody algebra g.
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> Let V =3 vj.i be an element of N[/], we consider the set Seq()’) of sequels of elements of I where i

icl
appears V; times.

> Exemple: Seq(2i + k) = {iik, iki, kii}
» For such an element V, we define an algebra R(V).

» Theorem [Khovanov-Lauda '08]: If R= @ R(V),
VeN[]

Ko(R — pmod) ~ U, (g)

> R(V) is generated by

Xkji =

i ik im i i dev1 im

foranyi=rii...im € Seq(V), 1< k<mand1 </l <m.
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Convergent presentation of the KLR algebras

> Relations to realize the algebras R()) as 2Hom-spaces of a linear 2-category:

i) Same color:

;é:o ><=><+||><=><*||

iif) Close colors:
< | <
Lo b b 52

4R e 15

it) Distant colors:

iv) Different colors:

vi) Braid relations:
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I1l. Categorification of the quantum group Ug(sl,)

Following Aaron Lauda: An introduction to diagrammatic algebra and categorified quantum sl»
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The Lie algebra sl

> A Lie algebra over a field K is a K-vector space g equipped with a Lie bracket [-,-] : g x g — g satisying:
> bilinearity: [Ax + ux’,y] = Alx, y] + ulx’sy],  [x, 0y +9y'T = d[x, y] + v[x, ¥'].
> antisymmetry: [x,y] = —[y, x].

» Jacobi identity: [[x,y], z] + [[v, z], x] + [[z,x],¥] = 0.
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» Jacobi identity: [[x,y], z] + [[v, z], x] + [[z,x],¥] = 0.

> A representation of a Lie algebra g is a K-vector space V with a Lie algebra morphism
p:g— gl(V):=End(V), that is

p([x,y]) = p(x) o p(y) — p(y) o p(x)
Notation: x - v := p(x)(v).
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p:g— gl(V):=End(V), that is

p([x,y]) = p(x) o p(y) — p(y) o p(x)
Notation: x - v := p(x)(v).

» Example: The lie algebra slz of 2 x 2 traceless matrices: sl = Ke & Kh @ Kf where

o (3 I R B (O

and satisfying [h, €] = 2e, [h, ] = —2f, [e,f] = h.
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The Lie algebra sl

> A Lie algebra over a field K is a K-vector space g equipped with a Lie bracket [-,-] : g x g — g satisying:
> bilinearity: [Ax + ux’,y] = Alx, y] + ulx’sy],  [x, 0y +9y'T = d[x, y] + v[x, ¥'].
> antisymmetry: [x,y] = —[y, x].

» Jacobi identity: [[x,y], z] + [[v, z], x] + [[z,x],¥] = 0.

> A representation of a Lie algebra g is a K-vector space V with a Lie algebra morphism
p:g— gl(V):=End(V), that is

p([x,y]) = p(x) o p(y) — p(y) o p(x)
Notation: x - v := p(x)(v).

» Example: The lie algebra slz of 2 x 2 traceless matrices: sl = Ke & Kh @ Kf where

o (3 I R B (O

and satisfying [h, €] = 2e, [h, ] = —2f, [e,f] = h.

> Let V be a finite dimensional representation of sl,. It can be decomposed as V = & V.., where

Vo={veKh v=av}

» Action of e and f on V,:
h(e(v)) = e(h(v)) + [h,e](v) = e(av) 4+ 2e(v) = (o + 2)e(v), and similarly, h(f(w)) = (a — 2)f(w).
» Therefore, e: E: Vo — Voip and f: Vo — Voo

> An irreducible representation V' admits a decomposition V = P
space, and Z is the weight lattice of sl5.

nez V, where V,, is called the n-th weight
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The quantum group Ug(sly)

» The quantum group U,(sl2) associated with sl is the Q(q)-algebra generated by elements E, F, K, K™!
subject to relations

KE = ¢°EK, KF = q2FK,

K—-K!

KK'=K'K =1, EF-FE= T
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The quantum group Ug(sly)

» The quantum group U,(sl2) associated with sl is the Q(q)-algebra generated by elements E, F, K, K™!

subject to relations

KE = ¢°EK, KF = q2FK,
g1
KK =K'K =1, EF—FE:%.

» Similarly, a representation of Uq(sl2) can be decomposed as V = . _, V,, where

V,={veK;h-v=g"v}

nEZ

> Given a weight vector v € V), the weights of Ev and Fv are determined using the relations
K(Ev) = G EKv = q"H(Ev)7 K(Fv) = q 2FKv = q”72(Fv),
sothat E: V, = Vpi2 and F: V, — V, 5.
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The quantum group Ug(sly)

» The quantum group U,(sl2) associated with sl is the Q(q)-algebra generated by elements E, F, K, K™!

subject to relations

KE = ¢°EK, KF = q2FK,
el
KK'=K'K =1, EF-FE= %.
> Similarly, a representation of Ug(sl2) can be decomposed as V = @, Vi, where
V,={veK;h-v=g"v}
> Given a weight vector v € V), the weights of Ev and Fv are determined using the relations
K(Ev) = G EKv = q"H(Ev)7 K(Fv) = q 2FKv = q”72(Fv),
sothat E: V, = Vpi2 and F: V, — V, 5.
» V can be thought of as a collection of vector spaces V,, for n € Z such that:
£ £ LN -
V_n T B Vo2 - V, Viia s W

F

K—K—1

and the main Ug(sl2) relation EF — FE = ~ = — holds.

» For v € V,, we thus have

_ -1 o -1 n__ _—n
(EF—FEy = K=K K=K v _da'=a’ .,

v
! qg—q! qg—q?!

q9—q
where [n] := Zn:q"__ln =q" ' +¢" 3 +...+q"""is called the quantum number n.
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Lusztig’s completion

» We will consider a modified form U of Uq(sl2) that is better suited to study representations, and that can
be interpreted as a 1-category, so that it is more natural for categorification purposes.
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Lusztig’s completion

» We will consider a modified form U of Uq(sl2) that is better suited to study representations, and that can
be interpreted as a 1-category, so that it is more natural for categorification purposes.

> First step: Consider the Q(q)-algebra obtained from Ug4(sl2) by adding a collection of orthogonal
idempotents 1, for n € Z:

Iolm = 6nmlm, Klp=1,K =q"1,, El,=1p2E, Fl,=1,_oF.

» The main sly relation is given by EF1, — FE1, = [n]1,.
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be interpreted as a 1-category, so that it is more natural for categorification purposes.
> First step: Consider the Q(q)-algebra obtained from Ug4(sl2) by adding a collection of orthogonal
idempotents 1, for n € Z:

Iolm = 6nmlm, Klp=1,K =q"1,, El,=1p2E, Fl,=1,_oF.

» The main sly relation is given by EF1, — FE1, = [n]1,.

> Second step: Consider an integral form of this algebra, that is a Z[q, g~ ']-algebra u generated by
K,K~',E@ F® for a,b € Z, where E® and F® are divided powers defined by

g0 _ B e _ F

B F :% with [a]! = [a][a — 1]...[1].

» The idempotents (1,)nez in u satisfy

Klp=1,K = q"ln, E@1,=1,2.E?, FO1,=1,,,F?.
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» We will consider a modified form U of Uq(sl2) that is better suited to study representations, and that can
be interpreted as a 1-category, so that it is more natural for categorification purposes.

> First step: Consider the Q(q)-algebra obtained from Ug4(sl2) by adding a collection of orthogonal
idempotents 1, for n € Z:

Iolm = 6nmlm, Klp=1,K =q"1,, El,=1p2E, Fl,=1,_oF.

» The main sly relation is given by EF1, — FE1, = [n]1,.

> Second step: Consider an integral form of this algebra, that is a Z[q, g~ ']-algebra u generated by
K,K~',E@ F® for a,b € Z, where E® and F® are divided powers defined by
g0 _ B e _ F

o T Ty Wil =lalla -

» The idempotents (1,)nez in u satisfy

Klp=1,K = q"ln, E@1,=1,2.E?, FO1,=1,,,F?.

» We have a direct sum decomposition U= &> 1,,,U1,, where lmUln is the Z[q, g~ ']-algebra generated
n,mez

by products 1,E@ F®)1, and 1,F®PE@1, for all a, b € Z, such that n+2a —2b = m.
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Lusztig’s completion

» We will consider a modified form U of Uq(sl2) that is better suited to study representations, and that can
be interpreted as a 1-category, so that it is more natural for categorification purposes.

> First step: Consider the Q(q)-algebra obtained from Ug4(sl2) by adding a collection of orthogonal
idempotents 1, for n € Z:

Iolm = 6nmlm, Klp=1,K =q"1,, El,=1p2E, Fl,=1,_oF.

» The main sly relation is given by EF1, — FE1, = [n]1,.

> Second step: Consider an integral form of this algebra, that is a Z[q, g~ ']-algebra u generated by
K,K~',E@ F® for a,b € Z, where E® and F® are divided powers defined by
b

E<a):[’;;]a!, Fo ;:% with [a]! = [alla — 1]...[1].

» The idempotents (1,)nez in u satisfy

Klp=1,K = q"ln, E@1,=1,2.E?, FO1,=1,,,F?.

» We have a direct sum decomposition U= &> 1,,,U1,, where lmUln is the Z[q, g~ ']-algebra generated
n,mez

by products 1,E@F®1, and 1,F®E@1, for all a,b € Z, such that n+ 2a—2b = m.
> U can be interpreted as a 1-category whose:
» objects are the n € Z,
» morphisms with source n and target m are the elements of 1,,,U1,,,
» identities are the 1, and composition 1, Ul,,, o 1,,/l.'J1,7 — 1,0 Uln is defined if N’ = m and corresponds to

the product.
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Categorification of U: O-cells and 1-cells

> U being a 1-category, we expect its categorification U(sl2) to be an additive 2-category, that is a category
enriched over the category of additive categories:

L{(ﬁ[z)

y

u
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Categorification of U: O-cells and 1-cells

> U being a 1-category, we expect its categorification U(sl>) to be an additive 2-category, that is a category

enriched over the category of additive categories:

u(5[2) mz/{n
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Koi \>KD
U—— @ 1.U1,
n,me”Z

where Ko(u(ﬁ[z)) = @n,mez Ko(mun) With [X] = [X1][X2] if X = X1 *0 X2 in u(ﬁ[z)

32/41



Categorification of U: O-cells and 1-cells

> U being a 1-category, we expect its categorification U(sl>) to be an additive 2-category, that is a category

enriched over the category of additive categories:

u(5[2) mz/{n
A
Koi \>KD
U—— @ 1.U1,
n,me”Z
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> 1,,,U1,, is a Z[q, g~ ']-module, and we lift the action of g as a grading automorphism {-} : U — U :

x{t}] = ¢'[x] ~ hom-sets U, for m, n € Z are graded
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> 1,,,U1,, is a Z[q, g~ ']-module, and we lift the action of g as a grading automorphism {-} : U — U :

x{t}] = ¢'[x] ~ hom-sets U, for m, n € Z are graded

> Fact: U admits a basis B with good properties, called Lusztig’s canonical basis made of elements
E@1_,F® and F®)1,E@ with a,b,n € N and n > a+ b.

> The structure coefficients are this basis are in N[q, g~ 1].

> This suggests that the indecomposable 1-morphisms in U/(sl2) should correspond (up to grading shift) to the

elements of B:
[bx]lby] = Z iy [bz] o by %1 by = EB @ b

z mf(y
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> Fact: U admits a basis B with good properties, called Lusztig’s canonical basis made of elements
E@1_,F® and F®)1,E@ with a,b,n € N and n > a+ b.

> The structure coefficients are this basis are in N[q, g~ 1].

> This suggests that the indecomposable 1-morphisms in U/(sl2) should correspond (up to grading shift) to the

elements of B:
[bx][by] = Z mZ. [bz] o~ by *1 b, =P ED b,

zmZ

» We lift the elements 1,, E1, and F1, of U as generating l-cells 1,, £1, and F1, with
1,:n—=n, 1,02,:n—>n+2 1, 2Fl,:n—n—2.
We simply denote 1,.2E1, by £1,, and 1,E1,_» 01, _»F1, is denoted by EF1,.

32/41



Categorification of U: O-cells and 1-cells

> U being a 1-category, we expect its categorification U(sl2) to be an additive 2-category, that is a category
enriched over the category of additive categories:

Z/[(5[2) mz/{n
A
Koi \>KD
U—— @ 1.U1,
n,me”Z

where Ko(u(ﬁ[z)) = @n,mez Ko(mun) With [X] = [X1][X2] if X = X1 *0 X2 in u(ﬁ[z)

> 1,,,U1,, is a Z[q, g~ ']-module, and we lift the action of g as a grading automorphism {-} : U — U :

x{t}] = ¢'[x] ~ hom-sets U, for m, n € Z are graded

> Fact: U admits a basis B with good properties, called Lusztig’s canonical basis made of elements
E@1_,F® and F®)1,E@ with a,b,n € N and n > a+ b.

> The structure coefficients are this basis are in N[q, g~ 1].

> This suggests that the indecomposable 1-morphisms in U/(sl2) should correspond (up to grading shift) to the

elements of B:
[bx][by] = Z mZ. [bz] o~ by *1 b, =P ED b,

zmZ

» We lift the elements 1,, E1, and F1, of U as generating l-cells 1,, £1, and F1, with
1,:n—=n, 1,02,:n—>n+2 1, 2Fl,:n—n—2.
We simply denote 1,.2E1, by £1,, and 1,E1,_» 01, _»F1, is denoted by EF1,.

» Therefore, the 1-cells of U/(sl2) with source n and target m are formal direct sums of elements of the form
lmgul]:ﬁl gx2 . ]:3k—1 (S‘Uk]-‘sk ln{S}
where m=n+2(>"a; — > 6i), and s € Z. 32/41



Categorification of U: 2-cells

> O-cells of U(sl2) are elements of the weight lattice Z of sl>, and 1-cells of U(sl>) are formal direct sums of
elements of the form
ln/ggln{t}

K
where e = (e1,...,6x), eache; € {+,—}, E4 =&, E-:=Fand n' —n=23¢1.

i=1
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Categorification of U: 2-cells

> O-cells of U(sl2) are elements of the weight lattice Z of sl>, and 1-cells of U(sl>) are formal direct sums of
elements of the form
ln/ggln{t}
K
where e = (e1,...,6x), eache; € {+,—}, E4 =&, E-:=Fand n' —n=23¢1.
i=1
» The space of 2-cells U(x, y) between 1-cells x and y is a graded vector space of degree homogeneous
2-cells:

Ulx,y) = Pu(x{t},y).

teZ
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Categorification of U: 2-cells

> O-cells of U(sl2) are elements of the weight lattice Z of sl>, and 1-cells of U(sl>) are formal direct sums of
elements of the form
ln/géln{t}

K
where e = (e1,...,6x), eache; € {+,—}, E4 =&, E-:=Fand n' —n=23¢1.

i=1

» The space of 2-cells U(x, y) between 1-cells x and y is a graded vector space of degree homogeneous
2-cells:

(x.y) = Pu(x{t}y).

teZ

» We have a map
HOMy(s1)(,) : Ur x Uh GrVectx

. - _ 0
Ko (Ko grdlm(V_nfeBZ Vn)_,,%z q"dim(V,)

() + Ug(sl) x Ug(sk) ———————— Z[[q,q7"]]
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Categorification of U: 2-cells

> O-cells of U(sl2) are elements of the weight lattice Z of sl>, and 1-cells of U(sl>) are formal direct sums of

elements of the form
ln/géln{t}

K
where e = (e1,...,6x), eache; € {+,—}, E4 =&, E-:=Fand n' —n=23¢1.

i=1

» The space of 2-cells U(x, y) between 1-cells x and y is a graded vector space of degree homogeneous
2-cells:

(x.y) = Pu(x{t}y).

teZ

» We have a map
HOMy(s1)(,) : Ur x Uh GrVectx

Ko (Ko grdlm(V:’FeBZ Vi) ,,%_‘ q"dim(V,)

() = Ug(sl) x Ug(sk) Zlla,a7*]]

> We thus get a pairing ([x], [y]) for x,y € U(sl2)1 such that
(@'xy)=a XD, (a'ly]) =a (], D
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Categorification of U: 2-cells

> O-cells of U(sl2) are elements of the weight lattice Z of sl>, and 1-cells of U(sl>) are formal direct sums of
elements of the form
ln/ggln{t}
K
where e = (e1,...,6x), eache; € {+,—}, E4 =&, E-:=Fand n' —n=23¢1.
i=1
» The space of 2-cells U(x, y) between 1-cells x and y is a graded vector space of degree homogeneous
2-cells:

Ux,y) = @Ux{t}y).

teZ

» We have a map

HOMy(s1)(,) : Ur x Uh GrVectx

Ko (Ko grdim(V=@@ V,,)= 3 ¢"dim(V,)

n€Z nez

(;) © Ug(sla) x Ug(sl)

Zlla,a7*]]

> We thus get a pairing ([x], [y]) for x,y € U(sl2)1 such that

@'xLy) =a (KD, (xa'y]) =q"(x], [y])-

» The graded HOMSs U(sl2)(x, y) categorify a semi-linear form on u.

»> Candidate : Lusztig defined such a pairing on U as the dimension of an Ext algebra between sheaves over a
quiver variety. It satisfies

() is semi-linear, and (1n; x1ny, 1, y1, ) = O for every x,y, unless ny = ny, na = nb.

> Moreover, one can compute values of this pairing on products of divided powers.
33741



Categorification of U: 2-cells

» We define identity 2-cells on the 1-cells £1,{t} and F1,{t} for every t € Z as follows:

let, () 171,00
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Categorification of U: 2-cells

» We define identity 2-cells on the 1-cells £1,{t} and F1,{t} for every t € Z as follows:

le1, () 171,00

» To construct 2-cells, we use

grdim(U(sl)(1mEln, 1mE1,)) = (ImEaly, 1mEa1,y)

> each term aqg’ on the right states that the space of 2-cells between 1,&:1, and 1,E./1, with degree t is of

dimension a.
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dimension a.

> Example 1: (E1,, E1,)=1+¢*+¢* +...
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Categorification of U: 2-cells

» We define identity 2-cells on the 1-cells £1,{t} and F1,{t} for every t € Z as follows:

le1, () 1r1,()

» To construct 2-cells, we use

grdim(U(sl)(1mEln, 1mE1,)) = (ImEaly, 1mEa1,y)

> each term aqg’ on the right states that the space of 2-cells between 1,&:1, and 1,E./1, with degree t is of

dimension a.
> Example 1: (E1,, E1,)=1+¢*+¢* +...

> U(E1,{t},E1,) = {0} for t < 0,
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Categorification of U: 2-cells

» We define identity 2-cells on the 1-cells £1,{t} and F1,{t} for every t € Z as follows:
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» To construct 2-cells, we use

grdim(U(sl)(1mEln, 1mE1,)) = (ImEaly, 1mEa1,y)

> each term aqg’ on the right states that the space of 2-cells between 1,&:1, and 1,E./1, with degree t is of
dimension a.

> Example 1: (E1,, E1,)=1+¢*+¢* +...

> UEL{t}, E1,) = {0} for t <0, U(E1,, E1,) is of dimension 1, generated by 1¢1,,.
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Categorification of U: 2-cells

» We define identity 2-cells on the 1-cells £1,{t} and F1,{t} for every t € Z as follows:

le1, () 171,00

» To construct 2-cells, we use

grdim(U(sl)(1mEln, 1mE1,)) = (ImEaly, 1mEa1,y)

> each term aqg’ on the right states that the space of 2-cells between 1,&:1, and 1,E./1, with degree t is of
dimension a.

» Example 1: (E1,,E1,) =1+ F+qt+ ...
> UEL{t}, E1,) = {0} for t <0, U(E1,, E1,) is of dimension 1, generated by 1¢1,,.
> The term g2 suggests that there is a 2-cell £1, = £1, with degree 2:

n+2 n
deg =2,
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Categorification of U: 2-cells

» We define identity 2-cells on the 1-cells £1,{t} and F1,{t} for every t € Z as follows:

le1, () 171,00

» To construct 2-cells, we use

grdim(U(sl)(1mEln, 1mE1,)) = (ImEaly, 1mEa1,y)

> each term aqg’ on the right states that the space of 2-cells between 1,&:1, and 1,E./1, with degree t is of
dimension a.

» Example 1: (E1,,E1,) =1+ F+qt+ ...
> UEL{t}, E1,) = {0} for t <0, U(E1,, E1,) is of dimension 1, generated by 1¢1,,.
> The term g2 suggests that there is a 2-cell £1, = £1, with degree 2:

n+2 n n—2 n
deg =2, similarly, deg =2.
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» We define identity 2-cells on the 1-cells £1,{t} and F1,{t} for every t € Z as follows:

le1, () 171,00

» To construct 2-cells, we use

grdim(U(sl)(1mEln, 1mE1,)) = (ImEaly, 1mEa1,y)

> each term aqg’ on the right states that the space of 2-cells between 1,&:1, and 1,E./1, with degree t is of
dimension a.

> Example 1: (E1,, E1,)=1+¢*+¢* +...
> UEL{t}, E1,) = {0} for t <0, U(E1,, E1,) is of dimension 1, generated by 1¢1,,.
> The term g2 suggests that there is a 2-cell £1, = £1, with degree 2:
n+2 n n—2 n
deg =2, similarly, deg =2.
> There is a g%, but no need to add a new generator in degree 4:

n+2 n
deg =4
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Categorification of U: 2-cells

» We define identity 2-cells on the 1-cells £1,{t} and F1,{t} for every t € Z as follows:

le1, () 171,00

» To construct 2-cells, we use

grdim(U(sl2)(1mEeln, 1n€er1n)) = (ImEcln, 1mEsr1n)

> each term aqg’ on the right states that the space of 2-cells between 1,&:1, and 1,E./1, with degree t is of
dimension a.

> Example 1: (E1,, E1,)=1+¢*+¢* +...
> UEL{t}, E1,) = {0} for t <0, U(E1,, E1,) is of dimension 1, generated by 1¢1,,.

> The term g2 suggests that there is a 2-cell £1, = £1, with degree 2:

n+2 n n—2 n
deg =2, similarly, deg =2.

> There is a g%, but no need to add a new generator in degree 4:

n+2 n
deg =4

> Forany a € N, U(sl2)(E1,{2a}, £1,) is of dimension 1, generated by

n+2 n n+2 n

34 /41



Categorification of U: 2-cells

» Example 2: (EE1,, EE1,) = (1 4+ q72) (#)

1—q—2

n+4 n
> If h(ag, a2) = a24 4“, ,then 3O qdeg(h(al,az)):(%).

P
ay,a2>0 q
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Categorification of U: 2-cells

» Example 2: (EE1,, EE1,) = (1 4+ q72) (#)

1—qg—2

n+4 n
> If h(ai,an) = 14 *,, ,then 30 qdeg(h(al,uz)):( 1 2)_

p—
o1,002>0 q

> A 2-cell E€1, = £E1,, is missing, we picture it by

wog| NS
a
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Categorification of U: 2-cells

» Example 2: (EE1,, EE1,) = (1 4+ q72) (#)

1—qg—2

n+4 n
> If h(ai,an) = 14 *,, ,then 30 qdeg(h(al,uz)):( 1 2)_

P
ay,a2>0 a

> A 2-cell E€1, = £E1,, is missing, we picture it by

deg | "T* \/ " =2 nooo— "t \/ "
Pl <

» One can deduce further relations:
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Categorification of U: 2-cells

» Example 2: (EE1,, EE1,) = (1 4+ q72) (ﬁ)
n-+4 n

> If h(ai,an) = az ax , then Z>0 qdes(h(az,a2)) — (1_;72)_
ag,az>

> A 2-cell E€1, = £E1,, is missing, we picture it by

deg | "T* \/ " =2 nooo— "t \/ "
{1\ < {1\

» One can deduce further relations:

> Since the coeff before q° is 3, the diagrams
S N L

are not linearly independant. We add nil Hecke relations between these forms.
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Categorification of U: 2-cells

» Example 2: (EE1,, EE1,) = (1 4+ q72) (ﬁ)
n-+4 n

> If h(a, az) = oz os , then Z>0 qleg(h(o,02)) — (1_;72)_
g, >

> A 2-cell E€1, = £E1,, is missing, we picture it by

deg | "T* \/ " =2 nooo— "t \/ "
{1\ < {1\

» One can deduce further relations:

deg iﬁ - - iio
S

> Since the coeff before q° is 3, the diagrams

are not linearly independant. We add nil Hecke relations between these forms.

ttr

> Example 3: (FE1,,1,) = £, (EF1,, 1,) = &3, (1, EFL,) = £, (1, FEL,) = & .
n n
enerator
& O\ £ U )
degree 1+n 1-n 1+n 1-n

subject to pivotal isotopy relations. 3541



Categorification of U: 2-cells

2
» Example 4: (EF1,, FE1,) = (1 + ¢°) ( ! 2) -

1—q
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Categorification of U: 2-cells

2
> Example 4: (EF1,, FE1,) :(1+q2)( ! ) .

1—q2

> There is a q°, but we do not need to add a degree 0 2-cell £EF1, = FE1, since

deg | n = deg | n =0
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1—q2

> There is a q°, but we do not need to add a degree 0 2-cell £EF1, = FE1, since
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Categorification of U: 2-cells

2
» Example 4: (EF1,, FE1,) = (1 + ¢°) (13q2) :

> There is a q°, but we do not need to add a degree 0 2-cell £EF1, = FE1, since

deg | n = deg | n =0 ><"

Il
3
\

» Similarly for (FE1,, EF1,),

deg‘ n :deg n =0 n >< =n = n
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Categorification of U: 2-cells

2
» Example 4: (EF1,, FE1,) = (1 + ¢°) (13q2) :

> There is a q°, but we do not need to add a degree 0 2-cell £EF1, = FE1, since

deg | n = deg | n =0 ><" :Wn

» Similarly for (FE1,, EF1,),

deg n :deg n =0 n>< :n%n

» One can show further relations and linear dependencies using Lusztig's pairing, e.g.

Il
3
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Categorification of U: 2-cells

2
» Example 4: (EF1,, FE1,) = (1 + ¢°) (1fq2) :

> There is a q°, but we do not need to add a degree 0 2-cell £EF1, = FE1, since

deg | n = deg | n =0 ><" :Wn

» Similarly for (FE1,, EF1,),

deg n| = deg n| =0 ”>< :nw
» One can show further relations and linear dependencies using Lusztig's pairing, e.g.
E}# - %{j n

» It is hard to prove that one has obtained all the necessary generating 2-cells: Lauda proved that with the
suited relations, the indecomposable 1-cells of U(sl>) correspond up to shifts with elements of 5.

Il
3

S
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Bubbles

» A bubble is an element of the algebras End(1,) for n € Z: O Q
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Bubbles

n n
» A bubble is an element of the algebras End(1,) for n € Z: O Q
a B8
n n
deg ( Aoy ) = 2q, deg ( () ) =20.
n—1+a —n—148
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Bubbles

n n
» A bubble is an element of the algebras End(1,) for n € Z: O Q
a B8
n n

deg O = 2aq, deg O =20.

n—1+a —n—14p

» There is a link between the bubble algebras End(1,) in U(sl2) and the algebra of symmetric polynomials
A(x1,...,xn). This latter is generated by

> elementary symmetric polynomials e;(x1,...,xn) = > X ...X;
Ja< <y

r

> complete symmetric polynomials h,(xq,...,xn) = > Xt xp"
my+---+mp=r

—1) exha—x = aowith hj = e =0forj<0and e, = hy = 1.
J )

k>0
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Bubbles

n n
» A bubble is an element of the algebras End(1,) for n € Z: O Q
a B8
n n

deg O = 2aq, deg O =20.

—n—14p

n—1+a

» There is a link between the bubble algebras End(1,) in U(sl2) and the algebra of symmetric polynomials
A(x1,...,xn). This latter is generated by

> elementary symmetric polynomials e;(x1,...,xn) = > X ...X;
Ja< <y

> complete symmetric polynomials h,(xq,...,xn) = > Xt xp"
my+---+mp=r

Z(*l)kekhafk = 604,0 with hj =€ = 0 fOI’j <0and e = h; = 1.
k>0
» For a partition A = (A1,...,\,), define e\ := ey, ... e\,, then there is an injective mapping

¢" : Nxt,...,xn) — End(1,)

n
Q Q- e
n—1+A1 n—1+X2 n—14+Am
e\ = €x; -..Ex, —
n
Q if n<0.
—n—1+A1 —n—1+4MX2 —n—14X\p

and define ey, := ¢"(ey). 37/41



Lifting of sl,-relations

» To lift the relation EF1, — FE1, = [n]1, of U one proves isomorphisms of the form
EF1, 2 FEL, &1, forn>0, FE1,=EFL, &1,°7 for n<0.
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Lifting of sl,-relations

» To lift the relation EF1, — FE1, = [n]1, of U one proves isomorphisms of the form
EF1, 2 FEL, &1, forn>0, FE1,=EFL, &1,°7 for n<0.

> For n > 0, we have a mapping F€1, & 151" — £71, given by
EF1,

u]q—z

F&1, & 1,{n—1} @ - @ 1{n—-1-24} & - D 1,{1—n}
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Lifting of sl,-relations

» To lift the relation EF1, — FE1, = [n]1, of U one proves isomorphisms of the form
EF1, 2 FEL, &1, forn>0, FE1,=EFL, &1,°7 for n<0.

> For n > 0, we have a mapping F€1, & 151" — £71, given by

NN

F&1, &) 1,{n—1} @ 1,{n—-1-2¢} 1,{1 - n}

> We will explicit an inverse by its components on each summand: ¢7 for the F£1, summand, and ¢¢ for
0 < /< n—1 for other summands. Using Lusztig's pairing,

n

Eo Y e L a=X "

(A +j=¢

for some coefficients af(n) € K that are determined by 650 = 2o lAl<b as(n)ex neb—|)n-
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Lifting of sl,-relations

» To lift the relation EF1, — FE1, = [n]1, of U one proves isomorphisms of the form
EF1, 2 FEL, &1, forn>0, FE1,=EFL, &1,°7 for n<0.

> For n > 0, we have a mapping F€1, & 151" — £71, given by

NN

F&1, &) 1,{n—1} @ 1,{n—-1-2¢} 1,{1 - n}

> We will explicit an inverse by its components on each summand: ¢7 for the F£1, summand, and ¢¢ for
0 < /< n—1 for other summands. Using Lusztig's pairing,

n
¢ ¢ » n
G = Z a)\(”)e/\-,n[‘(l ) . _><
A +j=¢
for some coefficients af(n) € K that are determined by 650 = 2o lAl<b as(n)exneb—|nn

» Khovanov and Lauda introduced fake bubbles to obtain relations that are fully diagrammatic:
n

" " " X ah(n) S e, HO0<j<-—n+t1

Q T™TQ O

~1 —1 n—1+j
0 if j < 0.

for n =0 and n < 0 respectively, with a similar definition in the case n > 0. 3001



Conclusion : generating 2-cells and relations

> U(slz) admits for generating 2-cells:

» + CiEL el * i FL = FlL A 5 EEL S EEL, N s FFL = F

n n

1, = EF1, N FEl, =1, | cEF1L, =1,
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Conclusion : generating 2-cells and relations

> U(slz) admits for generating 2-cells:
N + et e, * i FL = FlL A 5 EEL S EEL, N s FFL = F

T EFL, 1

\_J 1, = Fél, \ 1, = EF1, N FEl, =1, |

» These are subject to relations
> isotopy relations for caps and cups, and cyclicity relations for dots and crossings

UL 0T (R A7

n+2

» nilHecke relations for diagrams with upward orientations:

> Negative degree bubbles are 0, bubbles of degree 0 are identities, and infinite Grassmannian relation
» Quantum sl,-relations:

- 'y
O g1+g2nO

(=n—1)+g2

81

f1+fa=—
PRI s

n A AW
n f1 n &1
S O Y REE el e.
f1+fa+f3 o116 g1+82+83 n—1+ga
=n—1 f3 =—n—1 &3
Iy Y

for all n € Z. Whenever the summations are nonzero they utilize fake bubbles

n n —



Rewriting in U(sl)

» Difficulty 1 : Find a convenient presentation, with as less generators as possible.

40/41



Rewriting in U(sl)

» Difficulty 1 : Find a convenient presentation, with as less generators as possible.

» Difficulty 2 : If a pivotal linear 2-category admits bubble slide relations, it can not be presented by a
terminating polygraph:

=0 = (oY= (o= 0N

> We work with quasi-terminating rewriting systems, that is terminating up to rewriting loops.
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» Difficulty 1 : Find a convenient presentation, with as less generators as possible.

» Difficulty 2 : If a pivotal linear 2-category admits bubble slide relations, it can not be presented by a

O (V= @3 (7= O[]

> We work with quasi-terminating rewriting systems, that is terminating up to rewriting loops.

terminating polygraph:

» Difficulty 3 : Many relations are induced from other ones by a transformation by isotopy.
» To avoid orienting too many relations, we rewrite modulo isotopy.

» Split the system of rules into two parts: a set E of ‘equalities’, not oriented anymore, and a set R of oriented
relations.
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» Facilitate the confluence analysis of some branchings.

» Reduce the number of critical branchings to consider.
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Rewriting in U(sl)

» Difficulty 1 : Find a convenient presentation, with as less generators as possible.

» Difficulty 2 : If a pivotal linear 2-category admits bubble slide relations, it can not be presented by a
terminating polygraph:

O (V= @3 (7= O[]

> We work with quasi-terminating rewriting systems, that is terminating up to rewriting loops.

» Difficulty 3 : Many relations are induced from other ones by a transformation by isotopy.
» To avoid orienting too many relations, we rewrite modulo isotopy.

» Split the system of rules into two parts: a set E of ‘equalities’, not oriented anymore, and a set R of oriented
relations.

» Facilitate the confluence analysis of some branchings.
» Reduce the number of critical branchings to consider.

» However, can bring new shapes of rewriting cycles to take into account, and critical branchings are harder to
list, since they consist in application of relations on two diagrams that are E-congruent.
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Thank you for your attention.

41/41



