Benjamin Dupont

Institut Fourier, Université Grenoble Alpes

Séminaire de réécriture algébrique

28 Octobre 2021

- I. Linear 2-categories and string diagrams
- II. Diagrammatic rewriting and linear (3,2)-polygraphs
- III. Catégorification of $U_q(\mathfrak{sl}_2)$

Set Theory	Category Theory
set	category
element	object
relation between elements	morphism of objects
function	functor
relation between functions	natural transformation of functors

Obtain a richer structure to deduce new properties from the original one.

Set Theory	Category Theory
set	category
element	object
relation between elements	morphism of objects
function	functor
relation between functions	natural transformation of functors

- Obtain a richer structure to deduce new properties from the original one.
- Example: Consider the set N of natural numbers. A 'categorification' of N is given by the category FinSet of finite sets via cardinality.
- ▶ Sum and product in N correspond to disjoint union and cartesian product in FinSet respectively.
- ▶ + and \times in \mathbb{N} satisfy commutativity, associativity and distributivity, but \sqcup and \times in FinSet satisfy such laws only up to natural isomorphisms.

Set Theory	Category Theory
set	category
element	object
relation between elements	morphism of objects
function	functor
relation between functions	natural transformation of functors

- Obtain a richer structure to deduce new properties from the original one.
- Example: Consider the set N of natural numbers. A 'categorification' of N is given by the category FinSet of finite sets via cardinality.
- ▶ Sum and product in N correspond to disjoint union and cartesian product in FinSet respectively.
- ▶ + and × in \mathbb{N} satisfy commutativity, associativity and distributivity, but \sqcup and × in FinSet satisfy such laws only up to natural isomorphisms.
- ▶ The reverse process, called decategorification is made via the Grothendieck group.
- If A is an additive category (i.e. a 1-category equipped with finite biproducts ⊕ : A × A → A), the Grothendieck group K₀(A) of A is the free abelian group with basis the isomorphism classes [M] of 0-cells of A quotiented by the subgroup generated by the emements

 $[A_1] - [A_2] + [A_3]$ for every 0-cells A_1, A_2, A_3 of \mathcal{A} such that $A_2 \cong A_1 \oplus A_3$.

Set Theory	Category Theory
set	category
element	object
relation between elements	morphism of objects
function	functor
relation between functions	natural transformation of functors

- Obtain a richer structure to deduce new properties from the original one.
- Example: Consider the set N of natural numbers. A 'categorification' of N is given by the category FinSet of finite sets via cardinality.
- ► Sum and product in N correspond to disjoint union and cartesian product in FinSet respectively.
- ▶ + and × in \mathbb{N} satisfy commutativity, associativity and distributivity, but \Box and × in FinSet satisfy such laws only up to natural isomorphisms.
- ▶ The reverse process, called decategorification is made via the Grothendieck group.
- If A is an additive category (i.e. a 1-category equipped with finite biproducts ⊕ : A × A → A), the Grothendieck group K₀(A) of A is the free abelian group with basis the isomorphism classes [M] of 0-cells of A quotiented by the subgroup generated by the emements

 $[A_1] - [A_2] + [A_3]$ for every 0-cells A_1, A_2, A_3 of \mathcal{A} such that $A_2 \cong A_1 \oplus A_3$.

Example: Category Vect_K of K-vector spaces. Then $\mathcal{K}_0(\text{Vect}_K) \cong \mathbb{Z}$. Indeed, consider the map

$$f: \mathsf{Vect}_{\mathbb{K}} \to \mathbb{Z}, \ V \mapsto \mathsf{dim}(V)$$

For
$$M = \bigoplus_{i \in \mathbb{Z}} M_i$$
, $(M\{1\})_j = M_{j+1}$.

▶ If A is an additive category of graded R-modules closed under $\{\pm 1\}$, the group $K_0(A)$ is a $\mathbb{Z}[q, q^{-1}]$ -module via

 $q^{i}[M] = [M\{-i\}].$

For
$$M = \bigoplus_{i \in \mathbb{Z}} M_i$$
, $(M\{1\})_j = M_{j+1}$.

▶ If A is an additive category of graded R-modules closed under $\{\pm 1\}$, the group $K_0(A)$ is a $\mathbb{Z}[q, q^{-1}]$ -module via

$$q^i[M] = [M\{-i\}]$$

▶ If $A = \bigoplus_{i,j \in I} A_{i,j}$ admits a 1-categorical structure, one will categorify A using an additive 2-category, that is a 2-category A such that for every 0-cells x and y, A(x, y) is an additive category.

For
$$M = \bigoplus_{i \in \mathbb{Z}} M_i$$
, $(M\{1\})_j = M_{j+1}$.

▶ If A is an additive category of graded R-modules closed under $\{\pm 1\}$, the group $K_0(A)$ is a $\mathbb{Z}[q, q^{-1}]$ -module via

$$q'[M] = [M\{-i\}]$$

- ▶ If $A = \bigoplus_{i,j \in I} A_{i,j}$ admits a 1-categorical structure, one will categorify A using an additive 2-category, that is a 2-category A such that for every 0-cells x and y, A(x, y) is an additive category.
- ▶ The Grothendieck group of an additive 2-category \mathcal{A} is the 1-category $\mathcal{K}_0(\mathcal{A})$ whose:
 - ▶ 0-cells are the 0-cells of A,
 - ▶ 1-cells with source A and target B are the elements of $K_0(A_1(A, B))$. Composition of 1-cells is defined by

 $[f] \circ [g] = [f \star_0 g]$ for all $f \in \mathcal{A}_1(A, B)$, $g \in \mathcal{A}_1(B, C)$.

For
$$M = \bigoplus_{i \in \mathbb{Z}} M_i$$
, $(M\{1\})_j = M_{j+1}$.

▶ If A is an additive category of graded R-modules closed under $\{\pm 1\}$, the group $K_0(A)$ is a $\mathbb{Z}[q, q^{-1}]$ -module via

$$q'[M] = [M\{-i\}]$$

- ▶ If $A = \bigoplus_{i,j \in I} A_{i,j}$ admits a 1-categorical structure, one will categorify A using an additive 2-category, that is a 2-category A such that for every 0-cells x and y, A(x, y) is an additive category.
- ▶ The Grothendieck group of an additive 2-category \mathcal{A} is the 1-category $\mathcal{K}_0(\mathcal{A})$ whose:
 - ▶ 0-cells are the 0-cells of A,
 - ▶ 1-cells with source A and target B are the elements of $K_0(A_1(A, B))$. Composition of 1-cells is defined by

 $[f] \circ [g] = [f \star_0 g]$ for all $f \in \mathcal{A}_1(A, B)$, $g \in \mathcal{A}_1(B, C)$.

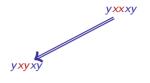
• Given the algebra $A = \bigoplus_{i,j \in I} A_{i,j}$, one will construct a 2-category \mathcal{A} with 0-cells the elements of I and such that the 1-categories $\mathcal{A}(i,j)$ are in correspondence with the $A_{i,j}$. Then, prove that

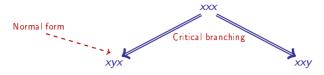
$$A\cong K_0(\mathcal{A}).$$

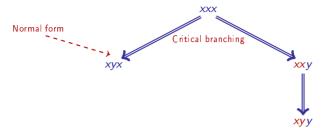
Proving such an isomorphism is a difficult task in general. A relevant question to do so is to compute bases for the spaces of morphisms of A.

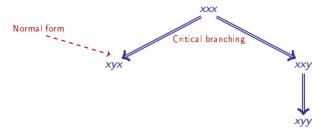
Example: Associative algebra A presented by generators $X = \{x, y\}$ and relations $R = \{x^2 \Rightarrow xy\}$.

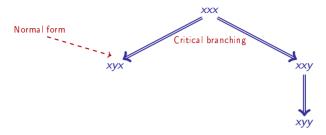
уххху





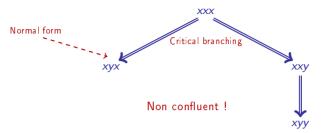






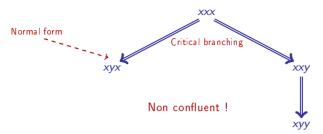
lt is terminating, using a deglex order on x > y.

Example: Associative algebra A presented by generators $X = \{x, y\}$ and relations $R = \{x^2 \Rightarrow xy\}$.



lt is terminating, using a deglex order on x > y.

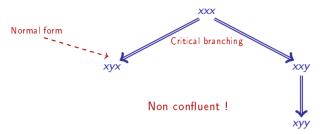
The monomials in normal form span the algebra. They are not linearly independent: the missing property is confluence.



lt is terminating, using a deglex order on x > y.

- The monomials in normal form span the algebra. They are not linearly independent: the missing property is confluence.
- Poincaré-Birkhoff-Witt theorem: Let L be a Lie algebra and let X be a totally well-ordered basis of L. Then, the universal enveloping algebra U(L) of L admits as a basis

$$\left\{x_1^{\alpha_1} \dots x_k^{\alpha_k} \mid \quad x_i < x_{i+1} \in X, \ \alpha_i \in \mathbb{N}\right\}$$

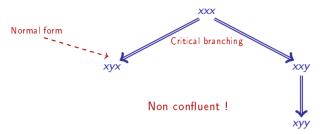


lt is terminating, using a deglex order on x > y.

- The monomials in normal form span the algebra. They are not linearly independent: the missing property is confluence.
- Poincaré-Birkhoff-Witt theorem: Let L be a Lie algebra and let X be a totally well-ordered basis of L. Then, the universal enveloping algebra U(L) of L admits as a basis

$$\left\{x_1^{\alpha_1} \dots x_k^{\alpha_k} \mid \quad x_i < x_{i+1} \in X, \ \alpha_i \in \mathbb{N}\right\}$$

- ▶ presentation of $U(\mathcal{L})$: {X | yx xy [y, x], $x \neq y \in X$ }
- choice of orientation of relations: $yx \rightarrow xy + [y, x]$, where x < y
- **•** this rewriting system is terminating, using a degree lexicographic order on $x_1 < x_2 < \cdots < x_k$,

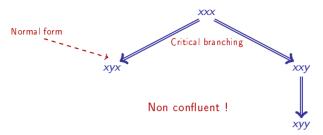


- lt is terminating, using a deglex order on x > y.
- The monomials in normal form span the algebra. They are not linearly independent: the missing property is confluence.
- Poincaré-Birkhoff-Witt theorem: Let L be a Lie algebra and let X be a totally well-ordered basis of L. Then, the universal enveloping algebra U(L) of L admits as a basis

$$\left\{x_1^{\alpha_1} \dots x_k^{\alpha_k} \mid \quad x_i < x_{i+1} \in X, \ \alpha_i \in \mathbb{N}\right\}$$

- ▶ presentation of $U(\mathcal{L})$: { $X \mid yx xy [y, x], x \neq y \in X$ }
- choice of orientation of relations: $yx \rightarrow xy + [y, x]$, where x < y
- this rewriting system is terminating, using a degree lexicographic order on $x_1 < x_2 < \cdots < x_k$,
- the critical branchings are on words of the norm zyx for x < y < z, their confluence is equivalent to the Jacobi identity:

Example: Associative algebra A presented by generators $X = \{x, y\}$ and relations $R = \{x^2 \Rightarrow xy\}$.



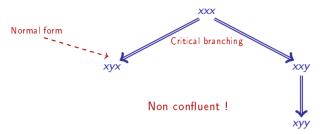
lt is terminating, using a deglex order on x > y.

- The monomials in normal form span the algebra. They are not linearly independent: the missing property is confluence.
- Poincaré-Birkhoff-Witt theorem: Let L be a Lie algebra and let X be a totally well-ordered basis of L. Then, the universal enveloping algebra U(L) of L admits as a basis

$$\left\{x_1^{lpha_1}\dots x_k^{lpha_k} \mid \quad x_i < x_{i+1} \in X, \ lpha_i \in \mathbb{N}
ight\}$$

- ▶ presentation of $U(\mathcal{L})$: { $X \mid yx xy [y, x], x \neq y \in X$ }
- choice of orientation of relations: $yx \rightarrow xy + [y, x]$, where x < y
- this rewriting system is terminating, using a degree lexicographic order on $x_1 < x_2 < \cdots < x_k$,
- the critical branchings are on words of the norm zyx for x < y < z, their confluence is equivalent to the Jacobi identity:

Example: Associative algebra A presented by generators $X = \{x, y\}$ and relations $R = \{x^2 \Rightarrow xy\}$.



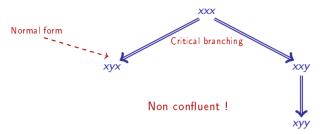
- lt is terminating, using a deglex order on x > y.
- The monomials in normal form span the algebra. They are not linearly independent: the missing property is confluence.
- Poincaré-Birkhoff-Witt theorem: Let L be a Lie algebra and let X be a totally well-ordered basis of L. Then, the universal enveloping algebra U(L) of L admits as a basis

$$\left\{x_1^{\alpha_1} \dots x_k^{\alpha_k} \mid \quad x_i < x_{i+1} \in X, \ \alpha_i \in \mathbb{N}\right\}$$

- ▶ presentation of $U(\mathcal{L})$: { $X \mid yx xy [y, x], x \neq y \in X$ }
- choice of orientation of relations: $yx \rightarrow xy + [y, x]$, where x < y
- this rewriting system is terminating, using a degree lexicographic order on $x_1 < x_2 < \cdots < x_k$,
- the critical branchings are on words of the norm zyx for x < y < z, their confluence is equivalent to the Jacobi identity:

$$yzx - [z, y]x \longrightarrow yxz - y[z, x] - [z, y]x$$
zyx

Example: Associative algebra A presented by generators $X = \{x, y\}$ and relations $R = \{x^2 \Rightarrow xy\}$.



- lt is terminating, using a deglex order on x > y.
- The monomials in normal form span the algebra. They are not linearly independent: the missing property is confluence.
- Poincaré-Birkhoff-Witt theorem: Let L be a Lie algebra and let X be a totally well-ordered basis of L. Then, the universal enveloping algebra U(L) of L admits as a basis

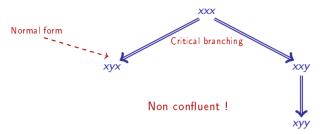
$$\left\{x_1^{\alpha_1} \dots x_k^{\alpha_k} \mid \quad x_i < x_{i+1} \in X, \ \alpha_i \in \mathbb{N}\right\}$$

- ▶ presentation of $U(\mathcal{L})$: { $X \mid yx xy [y, x], x \neq y \in X$ }
- choice of orientation of relations: $yx \rightarrow xy + [y, x]$, where x < y
- this rewriting system is terminating, using a degree lexicographic order on $x_1 < x_2 < \cdots < x_k$,
- the critical branchings are on words of the norm zyx for x < y < z, their confluence is equivalent to the Jacobi identity:

$$yzx - [z, y]x \longrightarrow yxz - y[z, x] - [z, y]x \longrightarrow xyz - [y, x]z - y[z, x] - [z, y]x$$
$$zyx$$

5/41

・ロト ・ 同ト ・ ヨト ・ ヨト



- lt is terminating, using a deglex order on x > y.
- The monomials in normal form span the algebra. They are not linearly independent: the missing property is confluence.
- Poincaré-Birkhoff-Witt theorem: Let L be a Lie algebra and let X be a totally well-ordered basis of L. Then, the universal enveloping algebra U(L) of L admits as a basis

$$\left\{x_1^{\alpha_1} \dots x_k^{\alpha_k} \mid \quad x_i < x_{i+1} \in X, \ \alpha_i \in \mathbb{N}\right\}$$

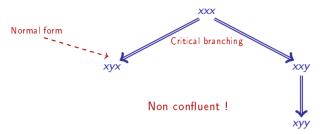
- ▶ presentation of $U(\mathcal{L})$: { $X \mid yx xy [y, x], x \neq y \in X$ }
- choice of orientation of relations: $yx \rightarrow xy + [y, x]$, where x < y
- **•** this rewriting system is terminating, using a degree lexicographic order on $x_1 < x_2 < \cdots < x_k$,
- the critical branchings are on words of the norm zyx for x < y < z, their confluence is equivalent to the Jacobi identity:

$$yzx - [z, y]x \longrightarrow yxz - y[z, x] - [z, y]x \longrightarrow xyz - [y, x]z - y[z, x] - [z, y]x$$

$$zyx$$

$$zxy - z[y, x]$$

$$zxy - z[y, x]$$



- lt is terminating, using a deglex order on x > y.
- The monomials in normal form span the algebra. They are not linearly independent: the missing property is confluence.
- Poincaré-Birkhoff-Witt theorem: Let L be a Lie algebra and let X be a totally well-ordered basis of L. Then, the universal enveloping algebra U(L) of L admits as a basis

$$\left\{x_1^{\alpha_1} \dots x_k^{\alpha_k} \mid \quad x_i < x_{i+1} \in X, \ \alpha_i \in \mathbb{N}\right\}$$

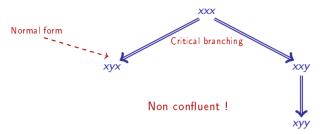
- ▶ presentation of $U(\mathcal{L})$: { $X \mid yx xy [y, x], x \neq y \in X$ }
- choice of orientation of relations: $yx \rightarrow xy + [y, x]$, where x < y
- **•** this rewriting system is terminating, using a degree lexicographic order on $x_1 < x_2 < \cdots < x_k$,
- the critical branchings are on words of the norm zyx for x < y < z, their confluence is equivalent to the Jacobi identity:

$$yzx - [z, y]x \longrightarrow yxz - y[z, x] - [z, y]x \longrightarrow xyz - [y, x]z - y[z, x] - [z, y]x$$

$$zyx$$

$$zxy - z[y, x] \longrightarrow xzy - [z, x]y - z[y, x]$$

Example: Associative algebra A presented by generators $X = \{x, y\}$ and relations $R = \{x^2 \Rightarrow xy\}$.



- lt is terminating, using a deglex order on x > y.
- The monomials in normal form span the algebra. They are not linearly independent: the missing property is confluence.
- Poincaré-Birkhoff-Witt theorem: Let L be a Lie algebra and let X be a totally well-ordered basis of L. Then, the universal enveloping algebra U(L) of L admits as a basis

$$\left\{x_1^{lpha_1}\dots x_k^{lpha_k} \mid \quad x_i < x_{i+1} \in X, \ lpha_i \in \mathbb{N}
ight\}$$

- ▶ presentation of $U(\mathcal{L})$ {X | yx xy [y, x], $x \neq y \in X$ }
- choice of orientation of relations: $yx \rightarrow xy + [y, x]$, where x < y
- **•** this rewriting system is terminating, using a degree lexicographic order on $x_1 < x_2 < \cdots < x_k$,
- the critical branchings are on words of the norm zyx for x < y < z, their confluence is equivalent to the Jacobi identity:

$$yzx - [z, y]x \longrightarrow yxz - y[z, x] - [z, y]x \longrightarrow xyz - [y, x]z - y[z, x] - [z, y]x$$

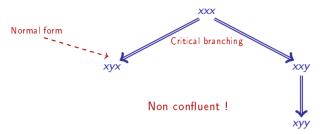
$$zyx$$

$$zxy - z[y, x] \longrightarrow xzy - [z, x]y - z[y, x] \longrightarrow xyz - x[z, y], [z, x]y - z[y, x]$$

$$(z) + (z) +$$

41

Example: Associative algebra A presented by generators $X = \{x, y\}$ and relations $R = \{x^2 \Rightarrow xy\}$.



- lt is terminating, using a deglex order on x > y.
- The monomials in normal form span the algebra. They are not linearly independent: the missing property is confluence.
- Poincaré-Birkhoff-Witt theorem: Let L be a Lie algebra and let X be a totally well-ordered basis of L. Then, the universal enveloping algebra U(L) of L admits as a basis

$$\left\{x_1^{\alpha_1} \dots x_k^{\alpha_k} \mid \quad x_i < x_{i+1} \in X, \ \alpha_i \in \mathbb{N}\right\}$$

- ▶ presentation of $U(\mathcal{L})$ {X | yx xy [y, x], $x \neq y \in X$ }
- choice of orientation of relations: $yx \rightarrow xy + [y, x]$, where x < y
- **•** this rewriting system is terminating, using a degree lexicographic order on $x_1 < x_2 < \cdots < x_k$,
- the critical branchings are on words of the norm zyx for x < y < z, their confluence is equivalent to the Jacobi identity:

$$yzx - [z, y]x \longrightarrow yxz - y[z, x] - [z, y]x \longrightarrow xyz - [y, x]z - y[z, x] - [z, y]x$$

$$zyx$$

$$zxy - z[y, x] \longrightarrow xzy - [z, x]y - z[y, x] \longrightarrow xyz - x[z, y], [z, x]y - z[y, x]$$

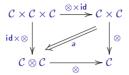
$$(z) + (z) +$$

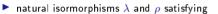
41

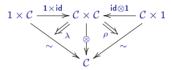
I. Linear 2-categories and string diagrams

Monoidal categories

- ▶ A monoidal category is a 1-category (C_0, C_1) equipped with
 - ▶ a functor $\otimes : C \times C \rightarrow C$ called tensor product,
 - ▶ a unit object $1 \in C_0$, called unit object,
 - a natural isomorphism a satisfying





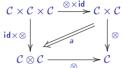


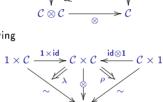
where 1 is the 1-category with one object \bullet and one morphism id \bullet , that are sent via 1 onto 1 and id 1.

Monoidal categories

▶ A monoidal category is a 1-category (C_0, C_1) equipped with

- ▶ a functor $\otimes : C \times C \rightarrow C$ called tensor product,
- ▶ a unit object $1 \in C_0$, called unit object,
- a natural isomorphism a satisfying





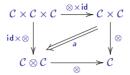
where 1 is the 1-category with one object \bullet and one morphism id_{\bullet}, that are sent via 1 onto 1 and id₁.

▶ For every objects $x, y, z \in C_0$, there are isomorphisms

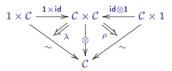
 $a_{x,y,z}: (x \otimes y) \otimes z \to x \otimes (y \otimes z), \quad \lambda_x: \mathbf{1} \otimes x \to x, \quad \rho_x: x \otimes \mathbf{1} \to x.$

Monoidal categories

- ▶ A monoidal category is a 1-category (C_0, C_1) equipped with
 - ▶ a functor $\otimes : C \times C \rightarrow C$ called tensor product,
 - ▶ a unit object $1 \in C_0$, called unit object,
 - a natural isomorphism a satisfying



• natural isormorphisms λ and ρ satisfying



where 1 is the 1-category with one object \bullet and one morphism id \bullet , that are sent via 1 onto 1 and id₁.

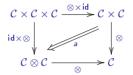
▶ For every objects $x, y, z \in C_0$, there are isomorphisms

 $a_{x,y,z}:(x\otimes y)\otimes z \to x\otimes (y\otimes z), \quad \lambda_x: \mathbf{1}\otimes x \to x, \quad \rho_x: x\otimes \mathbf{1} \to x.$

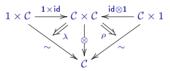
▶ A monoidal category is strict when the natural isomorphisms a, λ and ρ are identities.

Monoidal categories

- ▶ A monoidal category is a 1-category (C_0, C_1) equipped with
 - ▶ a functor $\otimes : C \times C \rightarrow C$ called tensor product,
 - ▶ a unit object $1 \in C_0$, called unit object,
 - a natural isomorphism a satisfying



• natural isormorphisms λ and ρ satisfying



where 1 is the 1-category with one object \bullet and one morphism id \bullet , that are sent via 1 onto 1 and id₁.

For every objects $x, y, z \in C_0$, there are isomorphisms

 $a_{x,y,z}: (x \otimes y) \otimes z \to x \otimes (y \otimes z), \quad \lambda_x: \mathbf{1} \otimes x \to x, \quad \rho_x: x \otimes \mathbf{1} \to x.$

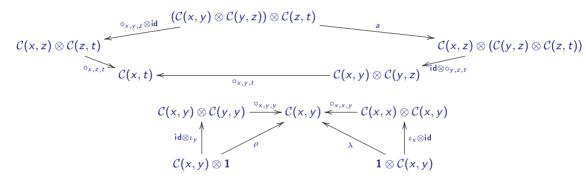
- ▶ A monoidal category is strict when the natural isomorphisms a, λ and ρ are identities.
- Composition of morphism and tensor products in a monoidal category satisfy exchange law, that is for every f, g, h, k ∈ C₁,

$$(f \otimes g) \circ (h \otimes k) = (f \circ g) \otimes (g \circ k).$$

- Let $\mathcal{V} = (V, \otimes, 1, a, \lambda, \rho)$ be a monoidal category. A category enriched over \mathcal{V} is a category $\mathcal{C} = (\mathcal{C}_0, \mathcal{C}_1)$ such that:
 - for every $x, y \in C_0$, $C(x, y) := Hom_C(x, y)$ is an object of V,
 - ▶ for every $x, y, z \in C_0$; $\circ_{x,y,z} : C(x, y) \otimes C(y, z)$ is a morphism of V,
 - for every $x \in C_0$, $\iota_x : \mathbf{1} \to C(x, x)$ is a morphism of V.

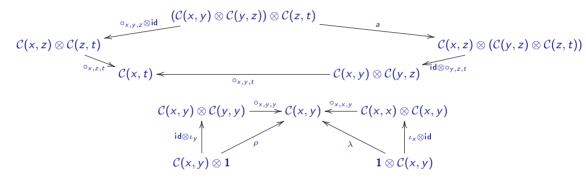
- Let $\mathcal{V} = (V, \otimes, 1, a, \lambda, \rho)$ be a monoidal category. A category enriched over \mathcal{V} is a category $\mathcal{C} = (\mathcal{C}_0, \mathcal{C}_1)$ such that:
 - for every $x, y \in C_0$, $C(x, y) := \text{Hom}_C(x, y)$ is an object of V,
 - ▶ for every $x, y, z \in C_0$; $\circ_{x,y,z} : C(x, y) \otimes C(y, z)$ is a morphism of \mathcal{V} ,
 - for every $x \in C_0$, $\iota_x : \mathbf{1} \to C(x, x)$ is a morphism of V.

such that the following diagrams commute in \mathcal{V} :



- Let $\mathcal{V} = (V, \otimes, 1, a, \lambda, \rho)$ be a monoidal category. A category enriched over \mathcal{V} is a category $\mathcal{C} = (\mathcal{C}_0, \mathcal{C}_1)$ such that:
 - for every $x, y \in C_0$, $C(x, y) := \text{Hom}_C(x, y)$ is an object of V,
 - ▶ for every $x, y, z \in C_0$; $\circ_{x,y,z} : C(x, y) \otimes C(y, z)$ is a morphism of V,
 - for every $x \in C_0$, $\iota_x : \mathbf{1} \to C(x, x)$ is a morphism of V.

such that the following diagrams commute in \mathcal{V} :



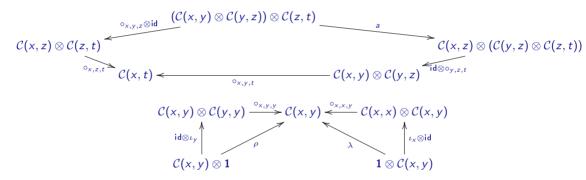
A K-linear category is a category enriched over (Vect_K, ⊗, K, a, λ, ρ), that is for every x, y ∈ C₀, C(x, y) is a K-vector space, and composition of morphisms C(x, y) × C(y, z) → C(x, z) is bilinear:

$$f\circ (\lambda g+\mu h)=\lambda (f\circ g)+\mu (f\circ h),$$

8/41 ▲□▶▲콜▶▲콜▶▲콜▶ 콜 ∽੧<ੵ~

- Let $\mathcal{V} = (V, \otimes, 1, a, \lambda, \rho)$ be a monoidal category. A category enriched over \mathcal{V} is a category $\mathcal{C} = (\mathcal{C}_0, \mathcal{C}_1)$ such that:
 - for every $x, y \in C_0$, $C(x, y) := \text{Hom}_C(x, y)$ is an object of V,
 - ▶ for every $x, y, z \in C_0$; $\circ_{x,y,z} : C(x, y) \otimes C(y, z)$ is a morphism of V,
 - for every $x \in C_0$, $\iota_x : \mathbf{1} \to C(x, x)$ is a morphism of V.

such that the following diagrams commute in \mathcal{V} :



► A K-linear category is a category enriched over (Vect_K, \otimes , K, a, λ , ρ), that is for every $x, y \in C_0$, C(x, y) is a K-vector space, and composition of morphisms $C(x, y) \times C(y, z) \xrightarrow{\circ} C(x, z)$ is bilinear:

$$f \circ (\lambda g + \mu h) = \lambda (f \circ g) + \mu (f \circ h).$$

► A K-linear monoidal category is a monoidal category in which the tensor product of morphisms $\otimes : C(x, y) \times C(z, t) \rightarrow C(x \otimes z, y \otimes t)$ is K-bilinear:

$$f \otimes (\lambda g + \mu h) = \lambda (f \otimes g) + \mu (f \otimes h)$$

8/41 イロト イラト イヨト ヨークへへ

▶ Recall that a 2-category is a category enriched over (Cat₁, ×, $\overset{\downarrow\downarrow}{\bullet}$). Explicitly, we have a set C_0 of objects, and for $p, q \in C_0$, C(p, q) is a 1-category.

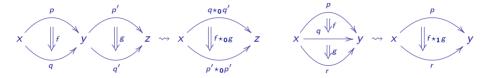
1.

- objects of $\mathcal{C}(p,q)$ are 1-cells with source p and target q. We denote by \mathcal{C}_1 the set of all 1-cells.
- morphisms of $\mathcal{C}(p,q)$ are 2-cells of \mathcal{C} . We denote by \mathcal{C}_2 the set of all 2-cells.

▶ Recall that a 2-category is a category enriched over (Cat₁, ×, $\begin{pmatrix} l \\ \bullet \end{pmatrix}$). Explicitly, we have a set C_0 of objects, and for $p, q \in C_0$, C(p, q) is a 1-category.

1.

- objects of $\mathcal{C}(p,q)$ are 1-cells with source p and target q. We denote by \mathcal{C}_1 the set of all 1-cells.
- morphisms of $\mathcal{C}(p,q)$ are 2-cells of \mathcal{C} . We denote by \mathcal{C}_2 the set of all 2-cells.
- ▶ There are two compositions in a 2-category:



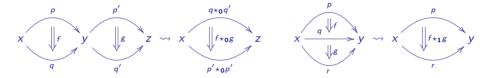
▶ These compositions satisfy the exchange law: for every f, f', g, g' in C_2 :

 $(f \star_1 f') \star_0 (g \star_1 g') = (f \star_0 g) \star_1 (f' \star_0 g').$

► Recall that a 2-category is a category enriched over (Cat₁, ×, .). Explicitly, we have a set C₀ of objects, and for p, q ∈ C₀, C(p, q) is a 1-category.

1.

- objects of $\mathcal{C}(p,q)$ are 1-cells with source p and target q. We denote by \mathcal{C}_1 the set of all 1-cells.
- morphisms of $\mathcal{C}(p,q)$ are 2-cells of \mathcal{C} . We denote by \mathcal{C}_2 the set of all 2-cells.
- ▶ There are two compositions in a 2-category:



▶ These compositions satisfy the exchange law: for every f, f', g, g' in C_2 :

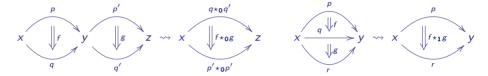
$$(f \star_1 f') \star_0 (g \star_1 g') = (f \star_0 g) \star_1 (f' \star_0 g')$$

- A K-linear 2-category is a category enriched over (Alg₁, ×,), where Alg₁ is the category of linear 1-categories.
 - For every $p, q \in C_1$, C(p, q) is a \mathbb{K} -vector space: for any $f, g \in C(p, q)$, $\lambda f + \mu g \in C_2(p, q)$.
 - $\blacktriangleright (\lambda f + \mu g) \star_0 h = \lambda f \star_0 h + \mu g \star_0 h, \quad \lambda f \star_1 \lambda h = \lambda (f \star_1 h).$

► Recall that a 2-category is a category enriched over (Cat₁, ×, ⁽⁾). Explicitly, we have a set C₀ of objects, and for p, q ∈ C₀, C(p, q) is a 1-category.

1.

- objects of $\mathcal{C}(p,q)$ are 1-cells with source p and target q. We denote by \mathcal{C}_1 the set of all 1-cells.
- morphisms of $\mathcal{C}(p,q)$ are 2-cells of \mathcal{C} . We denote by \mathcal{C}_2 the set of all 2-cells.
- There are two compositions in a 2-category:



These compositions satisfy the exchange law: for every f, f', g, g' in C_2 :

$$(f \star_1 f') \star_0 (g \star_1 g') = (f \star_0 g) \star_1 (f' \star_0 g')$$

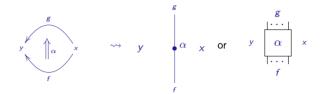
- A K-linear 2-category is a category enriched over (Alg₁, ×,), where Alg₁ is the category of linear 1-categories.
 - For every $p, q \in C_1$, C(p, q) is a \mathbb{K} -vector space: for any $f, g \in C(p, q)$, $\lambda f + \mu g \in C_2(p, q)$.
 - $\blacktriangleright (\lambda f + \mu g) \star_0 h = \lambda f \star_0 h + \mu g \star_0 h, \quad \lambda f \star_1 \lambda h = \lambda (f \star_1 h).$
- ▶ The structures of (K-linear) monoidal category and (K-linear) 2-category with one 0-cell coincide:

objets de $\mathcal{A} \leftrightarrow 1$ -cellules de \mathcal{C}

morphismes de $\mathcal{A} \leftrightarrow 2$ -cellules de \mathcal{C}

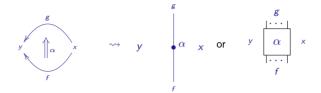
 $\otimes \leftrightarrow \star_0$, composition de morphismes $\leftrightarrow \star_1$

> 2-cells of a (K-linear) 2-category can be depicted using string diagrams, or circuits, as follows:



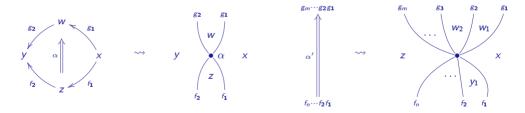
Convention : We read string diagrams from right to left, and from bottom to top.

▶ 2-cells of a (K-linear) 2-category can be depicted using string diagrams, or circuits, as follows:

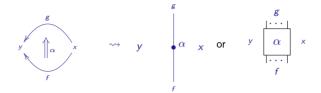


Convention : We read string diagrams from right to left, and from bottom to top.

► More generally,

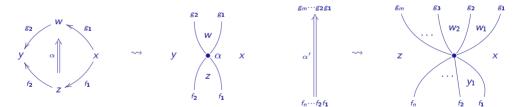


▶ 2-cells of a (K-linear) 2-category can be depicted using string diagrams, or circuits, as follows:

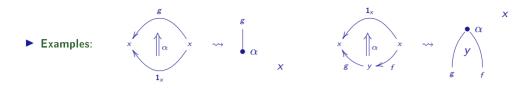


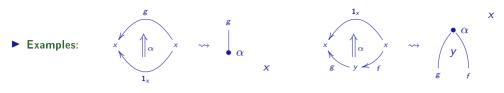
Convention : We read string diagrams from right to left, and from bottom to top.

▶ More generally,

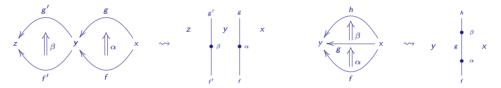


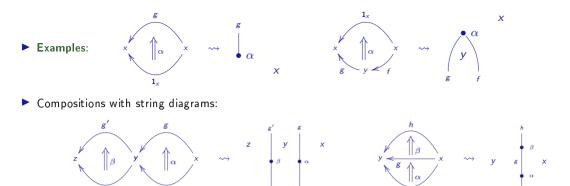
▶ We do not draw identity 1-cells in string diagrams:





Compositions with string diagrams:

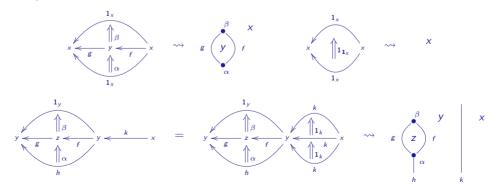




- ▶ Because identity 2-cells can be removed from composites using the identity axioms, we do not draw identity 2-cells.
- More examples:

γ.

β

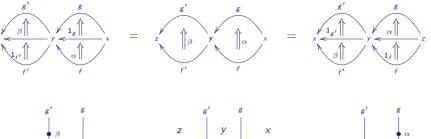


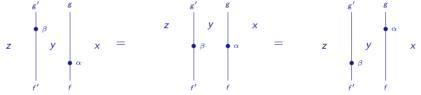
x

v g

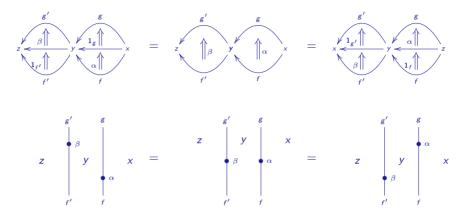
- x

Exchange law in terms of string diagrams:

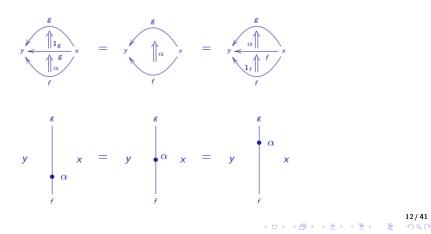




Exchange law in terms of string diagrams:



Therefore, height of a given string diagram on a strand does not matter:



Let C be a linear 2-category. If p is a 1-cell, a left-adjoint of p is a 1-cell \hat{p} such that there are 2-cells

$$\eta_{\rho}: 1 \Rightarrow p \star_{0} \hat{\rho}, \quad \varepsilon_{\rho}: \hat{\rho} \star_{0} p \Rightarrow 1, \quad \bigcup^{\hat{\rho}} p, \quad \bigcap_{\rho = \hat{\rho}} s.t. \quad \bigcap_{\rho = \rho} p = p, \quad \bigcup_{\hat{\rho}} s.t.$$

Let C be a linear 2-category. If p is a 1-cell, a left-adjoint of p is a 1-cell \hat{p} such that there are 2-cells

$$\eta_{p}: 1 \Rightarrow p \star_{0} \hat{p}, \quad \varepsilon_{p}: \hat{p} \star_{0} p \Rightarrow 1, \quad \bigcup^{\hat{p}} p, \quad \bigcap_{p = \hat{p}} s.t. \quad \bigcap_{p = p} p = p, \quad \bigcup_{\hat{p}} p = p, \quad \bigcap_{\hat{p}} p = p, \quad D_{p} p = p$$

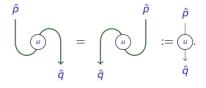
If \hat{p} is moreover a right-adjoint of p, we say that they are biadjoint and we also have

▶ Let C be a linear 2-category. If p is a 1-cell, a left-adjoint of p is a 1-cell \hat{p} such that there are 2-cells

$$\eta_{p}: 1 \Rightarrow p \star_{0} \hat{p}, \quad \varepsilon_{p}: \hat{p} \star_{0} p \Rightarrow 1, \quad \bigcup^{\hat{p}} p, \quad \bigcap_{p = \hat{p}} s.t. \quad \bigcap_{p = p} p = p, \quad \bigcup_{\hat{p}} p = c p.$$

lf \hat{p} is moreover a right-adjoint of p, we say that they are biadjoint and we also have

▶ A 2-cell $u: p \Rightarrow q$ is cyclic with respect to some biadjunction (p, \hat{p}) , (q, \hat{q}) if

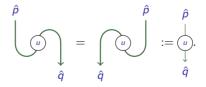


• Let C be a linear 2-category. If p is a 1-cell, a left-adjoint of p is a 1-cell \hat{p} such that there are 2-cells

$$\eta_{p}: 1 \Rightarrow p \star_{0} \hat{p}, \quad \varepsilon_{p}: \hat{p} \star_{0} p \Rightarrow 1, \quad \bigcup^{\hat{p}} p, \quad \bigcap_{p = \hat{p}} s.t. \quad \bigcap_{p = p} p = p, \quad \bigcup_{\hat{p}} p = c.c.$$

lf \hat{p} is moreover a right-adjoint of p, we say that they are biadjoint and we also have

A 2-cell $u: p \Rightarrow q$ is cyclic with respect to some biadjunction $(p, \hat{p}), (q, \hat{q})$ if



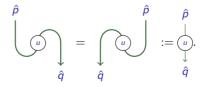
A 2-category is pivotal if every 1-cell admits a left and right adjoint p̂, and every 2-cell f : p ⇒ q is cyclic w.r.t biadjunctions (p, p̂), (q, q̂).

▶ Let C be a linear 2-category. If p is a 1-cell, a left-adjoint of p is a 1-cell p̂ such that there are 2-cells

$$\eta_{p}: 1 \Rightarrow p \star_{0} \hat{p}, \quad \varepsilon_{p}: \hat{p} \star_{0} p \Rightarrow 1, \quad \bigcup^{\hat{p}} p, \quad \bigcap_{p = \hat{p}} s.t. \quad \bigcap_{p = p} p = p, \quad \bigcup_{\hat{p}} p = c.c.$$

lf \hat{p} is moreover a right-adjoint of p, we say that they are biadjoint and we also have

A 2-cell $u: p \Rightarrow q$ is cyclic with respect to some biadjunction $(p, \hat{p}), (q, \hat{q})$ if



A 2-category is pivotal if every 1-cell admits a left and right adjoint p̂, and every 2-cell f : p ⇒ q is cyclic w.r.t biadjunctions (p, p̂), (q, q̂).

Fact: In a pivotal 2-category, two string diagrams that are equal up to isotopy represent the same 2-cell.

II. Diagrammatic rewriting and linear (3,2)-polygraphs

• Objective: study presentations of diagrammatic algebras and categories.

- Objective: study presentations of diagrammatic algebras and categories.
- **Example:** Let \mathbb{K} be a field. The **nilHecke algebra** NH_n of degree *n* is the \mathbb{K} -algebra presented by
 - generators x_i for $1 \le i \le n$ and τ_i for $1 \le i < n$;

- Objective: study presentations of diagrammatic algebras and categories.
- **Example:** Let \mathbb{K} be a field. The **nilHecke algebra** NH_n of degree *n* is the \mathbb{K} -algebra presented by
 - generators x_i for $1 \le i \le n$ and τ_i for $1 \le i < n$;

$$x_i x_j = x_j x_i$$

$$\tau_i x_j = x_j \tau_i \quad \text{si} \ |i - j| > 1$$

$$\tau_i \tau_j = \tau_j \tau_i \quad \text{si} \ |i - j| > 1$$

$$\tau_i^2 = 0$$

$$\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}$$

$$x_i \tau_i - \tau_i x_{i+1} = 1$$

$$\tau_i x_i - x_{i+1} \tau_i = 1$$

- Objective: study presentations of diagrammatic algebras and categories.
- **•** Example: Let K be a field. The nilHecke algebra NH_n of degree n is the K-algebra presented by
 - generators x_i for $1 \le i \le n$ and τ_i for $1 \le i < n$;

$$x_i = \left| \begin{array}{ccc} \dots & & \\ 1 & i & n \end{array} \right|, \quad \tau_i = \left| \begin{array}{ccc} \dots & & \\ \dots & & 1 & i & i+1 & n \end{array} \right|$$

$$x_i x_j = x_j x_i$$

$$\tau_i x_j = x_j \tau_i \quad \text{si } |i - j| > 1$$

$$\tau_i \tau_j = \tau_j \tau_i \quad \text{si } |i - j| > 1$$

$$\tau_i^2 = 0$$

$$\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}$$

$$x_i \tau_i - \tau_i x_{i+1} = 1$$

$$\tau_i x_i - x_{i+1} \tau_i = 1$$

- Objective: study presentations of diagrammatic algebras and categories.
- **Example:** Let \mathbb{K} be a field. The **nilHecke algebra** NH_n of degree *n* is the \mathbb{K} -algebra presented by
 - generators x_i for $1 \le i \le n$ and τ_i for $1 \le i < n$;

$$x_i = \left| \begin{array}{ccc} \dots & & \\ 1 & i & n \end{array} \right|, \quad \tau_i = \left| \begin{array}{ccc} \dots & & \\ \dots & & 1 & i & i+1 & n \end{array} \right|$$

$$\begin{aligned} x_i x_j &= x_j x_i \\ \tau_i x_j &= x_j \tau_i \quad \text{si} \ |i - j| > 1 \\ \tau_i \tau_j &= \tau_j \tau_i \quad \text{si} \ |i - j| > 1 \\ \tau_i^2 &= 0 \\ \tau_i \tau_{i+1} \tau_i &= \tau_{i+1} \tau_i \tau_{i+1} \\ x_i \tau_i &- \tau_i x_{i+1} = 1 \\ \tau_i x_i &- x_{i+1} \tau_i = 1 \end{aligned}$$

- **• Objective**: study presentations of diagrammatic algebras and categories.
- **•** Example: Let K be a field. The nilHecke algebra NH_n of degree n is the K-algebra presented by
 - generators x_i for $1 \le i \le n$ and τ_i for $1 \le i < n$;

$$x_i = \left| \begin{array}{ccc} \dots & & \\ 1 & i & n \end{array} \right|, \quad \tau_i = \left| \begin{array}{ccc} \dots & & \\ \dots & & 1 & i & i+1 & n \end{array} \right|$$

$$\begin{aligned} x_i x_j &= x_j x_i \\ \tau_i x_j &= x_j \tau_i \quad \text{si } |i - j| > 1 \\ \tau_i \tau_j &= \tau_j \tau_i \quad \text{si } |i - j| > 1 \\ \tau_i^2 &= 0 \\ \tau_i \tau_{i+1} \tau_i &= \tau_{i+1} \tau_i \tau_{i+1} \\ x_i \tau_i &- \tau_i x_{i+1} = 1 \\ \tau_i x_i - x_{i+1} \tau_i &= 1 \end{aligned}$$

- Objective: study presentations of diagrammatic algebras and categories.
- **Example:** Let \mathbb{K} be a field. The **nilHecke algebra** NH_n of degree *n* is the \mathbb{K} -algebra presented by
 - generators x_i for $1 \le i \le n$ and τ_i for $1 \le i < n$;

$$x_i = \left| \begin{array}{ccc} \dots & & \\ 1 & i & n \end{array} \right|, \quad \tau_i = \left| \begin{array}{ccc} \dots & & \\ \dots & & 1 & i & i+1 & n \end{array} \right|$$

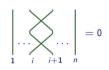
$$\begin{aligned} x_i x_j &= x_j x_i \\ \tau_i x_j &= x_j \tau_i \quad \text{si } |i - j| > 1 \\ \tau_i \tau_j &= \tau_j \tau_i \quad \text{si } |i - j| > 1 \\ \tau_i^2 &= 0 \\ \tau_i \tau_{i+1} \tau_i &= \tau_{i+1} \tau_i \tau_{i+1} \\ x_i \tau_i - \tau_i x_{i+1} &= 1 \\ \tau_i x_i - x_{i+1} \tau_i &= 1 \end{aligned}$$

$$\left|\begin{array}{cccc} \dots & & \\ & & & \\ 1 & & &$$

- ▶ Objective: study presentations of diagrammatic algebras and categories.
- **Example:** Let \mathbb{K} be a field. The nilHecke algebra NH_n of degree n is the \mathbb{K} -algebra presented by
 - generators x_i for $1 \le i \le n$ and τ_i for $1 \le i < n$;

$$x_i = \left| \begin{array}{ccc} \dots & & \\ 1 & i & n \end{array} \right|, \quad \tau_i = \left| \begin{array}{ccc} \dots & & \\ \dots & & & \\ 1 & i & i+1 & n \end{array} \right|$$

$$\begin{aligned} x_i x_j &= x_j x_i \\ \tau_i x_j &= x_j \tau_i \quad \text{si } |i - j| > 1 \\ \tau_i \tau_j &= \tau_j \tau_i \quad \text{si } |i - j| > 1 \\ \tau_i^2 &= 0 \\ \tau_i \tau_{i+1} \tau_i &= \tau_{i+1} \tau_i \tau_{i+1} \\ x_i \tau_i &- \tau_i x_{i+1} = 1 \\ \tau_i x_i - x_{i+1} \tau_i &= 1 \end{aligned}$$



- Objective: study presentations of diagrammatic algebras and categories.
- **Example:** Let \mathbb{K} be a field. The **nilHecke algebra** NH_n of degree *n* is the \mathbb{K} -algebra presented by
 - generators x_i for $1 \le i \le n$ and τ_i for $1 \le i < n$;

$$x_i = \left| \begin{array}{ccc} \dots & & \\ 1 & i & n \end{array} \right|, \quad \tau_i = \left| \begin{array}{ccc} \dots & & \\ \dots & & 1 & i & i+1 & n \end{array} \right|$$

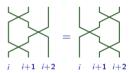
$$\begin{aligned} x_i x_j &= x_j x_i \\ \tau_i x_j &= x_j \tau_i \quad \text{si } |i - j| > 1 \\ \tau_i \tau_j &= \tau_j \tau_i \quad \text{si } |i - j| > 1 \\ \tau_i^2 &= 0 \\ \tau_i \tau_{i+1} \tau_i &= \tau_{i+1} \tau_i \tau_{i+1} \\ x_i \tau_i &- \tau_i x_{i+1} = 1 \\ \tau_i x_i - x_{i+1} \tau_i &= 1 \end{aligned}$$

$$\sum_{i=i+1}^{i} = 0$$

- Objective: study presentations of diagrammatic algebras and categories.
- **Example:** Let \mathbb{K} be a field. The **nilHecke algebra** NH_n of degree *n* is the \mathbb{K} -algebra presented by
 - generators x_i for $1 \le i \le n$ and τ_i for $1 \le i < n$;

$$x_i = \left| \begin{array}{ccc} \dots & & \\ 1 & i & n \end{array} \right|, \quad \tau_i = \left| \begin{array}{ccc} \dots & & \\ \dots & & 1 & i & i+1 & n \end{array} \right|$$

$$\begin{aligned} x_i x_j &= x_j x_i \\ \tau_i x_j &= x_j \tau_i \quad \text{si } |i - j| > 1 \\ \tau_i \tau_j &= \tau_j \tau_i \quad \text{si } |i - j| > 1 \\ \tau_i^2 &= 0 \\ \tau_i \tau_{i+1} \tau_i &= \tau_{i+1} \tau_i \tau_{i+1} \\ x_i \tau_i &- \tau_i x_{i+1} = 1 \\ \tau_i x_i - x_{i+1} \tau_i &= 1 \end{aligned}$$



- Objective: study presentations of diagrammatic algebras and categories.
- **Example:** Let \mathbb{K} be a field. The nilHecke algebra NH_n of degree n is the \mathbb{K} -algebra presented by
 - generators x_i for $1 \le i \le n$ and τ_i for $1 \le i < n$;

$$x_i = \left| \begin{array}{ccc} \dots & & \\ 1 & i & n \end{array} \right|, \quad \tau_i = \left| \begin{array}{ccc} \dots & & \\ \dots & & \\ 1 & i & i+1 & n \end{array} \right|$$

$$x_i x_j = x_j x_i$$

$$\tau_i x_j = x_j \tau_i \quad \text{si } |i - j| > 1$$

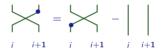
$$\tau_i \tau_j = \tau_j \tau_i \quad \text{si } |i - j| > 1$$

$$\tau_i^2 = 0$$

$$\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}$$

$$x_i \tau_i - \tau_i x_{i+1} = 1$$

$$\tau_i x_i - x_{i+1} \tau_i = 1$$



- Objective: study presentations of diagrammatic algebras and categories.
- **Example:** Let \mathbb{K} be a field. The nilHecke algebra NH_n of degree n is the \mathbb{K} -algebra presented by
 - generators x_i for $1 \le i \le n$ and τ_i for $1 \le i < n$;

$$x_i = \left| \begin{array}{ccc} \dots & & \\ 1 & i & n \end{array} \right|, \quad \tau_i = \left| \begin{array}{ccc} \dots & & \\ \dots & & \\ 1 & i & i+1 & n \end{array} \right|$$

$$x_i x_j = x_j x_i$$

$$\tau_i x_j = x_j \tau_i \quad \text{si } |i - j| > 1$$

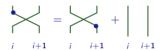
$$\tau_i \tau_j = \tau_j \tau_i \quad \text{si } |i - j| > 1$$

$$\tau_i^2 = 0$$

$$\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}$$

$$x_i \tau_i - \tau_i x_{i+1} = 1$$

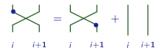
$$\tau_i x_i - x_{i+1} \tau_i = 1$$



- **• Objective**: study presentations of diagrammatic algebras and categories.
- **Example:** Let \mathbb{K} be a field. The nilHecke algebra NH_n of degree n is the \mathbb{K} -algebra presented by
 - generators x_i for $1 \le i \le n$ and τ_i for $1 \le i < n$;

relations :

$$\begin{aligned} x_i x_j &= x_j x_i \\ \tau_i x_j &= x_j \tau_i \quad \text{si } |i - j| > 1 \\ \tau_i \tau_j &= \tau_j \tau_i \quad \text{si } |i - j| > 1 \\ \tau_i^2 &= 0 \\ \tau_i \tau_{i+1} \tau_i &= \tau_{i+1} \tau_i \tau_{i+1} \\ x_i \tau_i &- \tau_i x_{i+1} = 1 \\ \tau_i x_i &- x_{i+1} \tau_i = 1 \end{aligned}$$



More economic way to study these algebras: realize them as 2-morphism spaces of a linear 2-category.

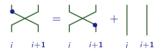
Diagrammatic algebras

- **• Objective**: study presentations of diagrammatic algebras and categories.
- **•** Example: Let K be a field. The nilHecke algebra NH_n of degree n is the K-algebra presented by
 - generators x_i for $1 \le i \le n$ and τ_i for $1 \le i < n$;

$$x_i = \left| \begin{array}{ccc} \dots & \bullet & \dots \\ 1 & i & n \end{array} \right|, \quad \tau_i = \left| \begin{array}{ccc} \dots & \bullet & \dots \\ 1 & i & i+1 & n \end{array} \right|$$

relations

$$\begin{aligned} x_i x_j &= x_j x_i \\ \tau_i x_j &= x_j \tau_i \quad \text{si } |i - j| > 1 \\ \tau_i \tau_j &= \tau_j \tau_i \quad \text{si } |i - j| > 1 \\ \tau_i^2 &= 0 \\ \tau_i \tau_{i+1} \tau_i &= \tau_{i+1} \tau_i \tau_{i+1} \\ x_i \tau_i - \tau_i x_{i+1} &= 1 \\ \tau_i x_i - x_{i+1} \tau_i &= 1 \end{aligned}$$



More economic way to study these algebras: realize them as 2-morphism spaces of a linear 2-category.

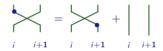
- Let us define the nilHecke 2-category \mathcal{NH} by
 - $\blacktriangleright \mathcal{NH}_0 = \{\bullet\},\$
 - $\mathcal{NH}_1 = \{n \in \mathbb{N}\}$ (number of strands on sources and targets),
 - NH2 contains K-linear combinations of diagrams made of crossings and dots, subject to the local relations

Diagrammatic algebras

- **• Objective**: study presentations of diagrammatic algebras and categories.
- ▶ Example: Let K be a field. The nilHecke algebra NHn of degree n is the K-algebra presented by
 - generators x_i for $1 \le i \le n$ and τ_i for $1 \le i < n$;

relations

$$\begin{aligned} x_i x_j &= x_j x_i \\ \tau_i x_j &= x_j \tau_i \quad \text{si } |i - j| > 1 \\ \tau_i \tau_j &= \tau_j \tau_i \quad \text{si } |i - j| > 1 \\ \tau_i^2 &= 0 \\ \tau_i \tau_{i+1} \tau_i &= \tau_{i+1} \tau_i \tau_{i+1} \\ x_i \tau_i - \tau_i x_{i+1} &= 1 \\ \tau_i x_i - x_{i+1} \tau_i &= 1 \end{aligned}$$



 $NH_n \simeq \operatorname{End}_{\mathcal{NH}}(n)$

More economic way to study these algebras: realize them as 2-morphism spaces of a linear 2-category.

 \blacktriangleright Let us define the nilHecke 2-category \mathcal{NH} by

$$\blacktriangleright \mathcal{NH}_0 = \{\bullet\},\$$

- $\mathcal{NH}_1 = \{n \in \mathbb{N}\}$ (number of strands on sources and targets),
- NH2 contains K-linear combinations of diagrams made of crossings and dots, subject to the local relations

- Linear 2-categories are presented by linear (3, 2)-polygraphs, that are quadruples (P_0, P_1, P_2, P_3) made of
 - ▶ a 1-polygraph (P_0, P_1) , on which we construct the free 1-category P_1^* ,
 - a cellular extension

$$P_2 \xrightarrow[t_1]{s_1} P_1^*$$

of generating 2-cells/diagrammatic pieces.

- Linear 2-categories are presented by linear (3, 2)-polygraphs, that are quadruples (P_0, P_1, P_2, P_3) made of
 - ▶ a 1-polygraph (P_0, P_1) , on which we construct the free 1-category P_1^* ,
 - a cellular extension

$$P_2 \xrightarrow[t_1]{s_1} P_1$$

of generating 2-cells/diagrammatic pieces.

• consider the free 2-category P_2^* on (P_0, P_1, P_2) , made of all \star_0 and \star_1 -compositions of generating 2-cells,

- Linear 2-categories are presented by linear (3, 2)-polygraphs, that are quadruples (P_0, P_1, P_2, P_3) made of
 - ▶ a 1-polygraph (P_0, P_1) , on which we construct the free 1-category P_1^* ,
 - a cellular extension

$$P_2 \xrightarrow[t_1]{s_1} P_2$$

of generating 2-cells/diagrammatic pieces.

- ▶ consider the free 2-category P_2^* on (P_0, P_1, P_2) , made of all \star_0 and \star_1 -compositions of generating 2-cells,
- extend to the free linear 2-category P_2^{ℓ} :

$$P_2^{\ell}(u,v) = \operatorname{Span}_{\mathbb{K}}[P_2^*(x,y)].$$

- Linear 2-categories are presented by linear (3, 2)-polygraphs, that are quadruples (P_0, P_1, P_2, P_3) made of
 - ▶ a 1-polygraph (P_0, P_1) , on which we construct the free 1-category P_1^* ,
 - a cellular extension

$$P_2 \xrightarrow[t_1]{s_1} P_1$$

of generating 2-cells/diagrammatic pieces.

• consider the free 2-category P_2^* on (P_0, P_1, P_2) , made of all \star_0 and \star_1 -compositions of generating 2-cells,

• extend to the free linear 2-category
$$P_2^{\ell}$$
:

$$P_2^{\ell}(u,v) = \operatorname{Span}_{\mathbb{K}}[P_2^*(x,y)].$$

• consider a cellular extension $P_3 \xrightarrow[t_2]{s_2} P_2^{\ell}$ containing oriented relations of the linear 2-category.

- Linear 2-categories are presented by linear (3, 2)-polygraphs, that are quadruples (P_0, P_1, P_2, P_3) made of
 - ▶ a 1-polygraph (P_0, P_1) , on which we construct the free 1-category P_1^* ,
 - a cellular extension

$$P_2 \xrightarrow[t_1]{s_1} P_2$$

of generating 2-cells/diagrammatic pieces.

• consider the free 2-category P_2^* on (P_0, P_1, P_2) , made of all \star_0 and \star_1 -compositions of generating 2-cells,

• extend to the free linear 2-category
$$P_2^{\ell}$$
:
 $P_2^{\ell}(u, v) = \operatorname{Span}_{\mathbb{K}}[P_2^*(x, v)].$

- consider a cellular extension $P_3 \xrightarrow[t_2]{s_2} P_2^{\ell}$ containing oriented relations of the linear 2-category.
- Example: For the nilHecke 2-category:
 - $P_0 = \{\bullet\}$ and $P_1 = \{1\}$, so that $P_1^* = \mathbb{N}$ with $n := 1 \star_0 \cdots \star_0 1$.
 - $\blacktriangleright P_2 = \{ \searrow : 2 \to 2, \qquad \bullet : 1 \to 1 \}$

$$\blacktriangleright P_3 = \{ \overleftrightarrow{\Rightarrow} 0, \qquad \overleftrightarrow{\Rightarrow} \checkmark \uparrow, \qquad \checkmark \Rightarrow \checkmark \uparrow + | |, \qquad \checkmark \Rightarrow \checkmark \neg - | | . \}$$

16/41 <□▶ < 큔▶ < 흔▷ < 흔▷ 등 의 < ♡

- Linear 2-categories are presented by linear (3, 2)-polygraphs, that are quadruples (P_0, P_1, P_2, P_3) made of
 - ▶ a 1-polygraph (P_0, P_1) , on which we construct the free 1-category P_1^* ,
 - a cellular extension

$$P_2 \xrightarrow[t_1]{s_1} P_1$$

of generating 2-cells/diagrammatic pieces.

• consider the free 2-category P_2^* on (P_0, P_1, P_2) , made of all \star_0 and \star_1 -compositions of generating 2-cells,

• extend to the free linear 2-category
$$P_2^{\ell}$$
:
 $P_2^{\ell}(u, v) = \operatorname{Span}_{\mathbb{K}}[P_2^*(x, v)].$

- consider a cellular extension $P_3 \xrightarrow[t_2]{s_2} P_2^{\ell}$ containing oriented relations of the linear 2-category.
- Example: For the nilHecke 2-category:
 - $P_0 = \{\bullet\}$ and $P_1 = \{1\}$, so that $P_1^* = \mathbb{N}$ with $n := 1 \star_0 \cdots \star_0 1$.
 - $\blacktriangleright P_2 = \{ \begin{array}{|c|} & P_2 = \{ \begin{array}{|c|} & P_2 = 2 \end{array} \right.$

$$\blacktriangleright P_3 = \{ \overleftrightarrow{\Rightarrow} 0, \qquad \overleftrightarrow{\Rightarrow} \overleftrightarrow{\rightarrow}, \qquad \checkmark{\Rightarrow} \overleftrightarrow{\rightarrow} + | |, \qquad \checkmark{\Rightarrow} \overleftrightarrow{\rightarrow} - | | . \}$$

To sum up:

- Linear 2-categories are presented by linear (3, 2)-polygraphs, that are quadruples (P_0, P_1, P_2, P_3) made of
 - ▶ a 1-polygraph (P_0, P_1) , on which we construct the free 1-category P_1^* ,
 - a cellular extension

$$P_2 \xrightarrow[t_1]{s_1} P_1$$

of generating 2-cells/diagrammatic pieces.

• consider the free 2-category P_2^* on (P_0, P_1, P_2) , made of all \star_0 and \star_1 -compositions of generating 2-cells,

• extend to the free linear 2-category
$$P_2^{\ell}$$
:
 $P_2^{\ell}(u, v) = \operatorname{Span}_{\mathbb{K}}[P_2^*(x, v)].$

- consider a cellular extension $P_3 \xrightarrow[t_2]{s_2} P_2^{\ell}$ containing oriented relations of the linear 2-category.
- Example: For the nilHecke 2-category:
 - $P_0 = \{\bullet\}$ and $P_1 = \{1\}$, so that $P_1^* = \mathbb{N}$ with $n := 1 \star_0 \cdots \star_0 1$.
 - $\blacktriangleright P_2 = \{ \begin{array}{|c|} & P_2 = \{ \begin{array}{|c|} & P_2 = 2 \end{array} \right.$

$$\blacktriangleright P_3 = \{ \overleftrightarrow{\Rightarrow} 0, \qquad \overleftrightarrow{\Rightarrow} \overleftrightarrow{\rightarrow}, \qquad \checkmark{\Rightarrow} \swarrow{\rightarrow} + | |, \qquad \checkmark{\Rightarrow} \nleftrightarrow{\rightarrow} - | | . \}$$

To sum up:

$$\begin{array}{ccc} P_0 & \swarrow & P_1^* \\ & & \uparrow \\ & & & P_1 \end{array}$$

10/41 《 마 ▶ 《 큔 ▶ 《 콘 ▶ 《 콘 ▶ 홈 · 이 익 안

- Linear 2-categories are presented by linear (3, 2)-polygraphs, that are quadruples (P_0, P_1, P_2, P_3) made of
 - ▶ a 1-polygraph (P_0, P_1) , on which we construct the free 1-category P_1^* ,
 - a cellular extension

$$P_2 \xrightarrow[t_1]{s_1} P_1$$

of generating 2-cells/diagrammatic pieces.

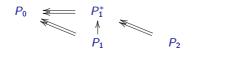
• consider the free 2-category P_2^* on (P_0, P_1, P_2) , made of all \star_0 and \star_1 -compositions of generating 2-cells,

• extend to the free linear 2-category
$$P_2^{\ell}$$
:
 $P_2^{\ell}(u, v) = \operatorname{Span}_{\mathbb{K}}[P_2^*(x, v)].$

- consider a cellular extension $P_3 \xrightarrow[t_2]{s_2} P_2^{\ell}$ containing oriented relations of the linear 2-category.
- Example: For the nilHecke 2-category:
 - $P_0 = \{\bullet\}$ and $P_1 = \{1\}$, so that $P_1^* = \mathbb{N}$ with $n := 1 \star_0 \cdots \star_0 1$.
 - $\blacktriangleright P_2 = \{ \searrow : 2 \to 2, \qquad \bullet : 1 \to 1 \}$

$$\bullet P_3 = \{ \overleftrightarrow{\Rightarrow} 0, \qquad \overleftrightarrow{\Rightarrow} \overleftrightarrow{\rightarrow}, \qquad \bigstar{\Rightarrow} \swarrow{+} | |, \qquad \overleftrightarrow{\Rightarrow} \overleftrightarrow{-} | | . \}$$

To sum up:



16/41

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─

- Linear 2-categories are presented by linear (3, 2)-polygraphs, that are quadruples (P_0, P_1, P_2, P_3) made of
 - ▶ a 1-polygraph (P_0, P_1) , on which we construct the free 1-category P_1^* ,
 - a cellular extension

$$P_2 \xrightarrow[t_1]{s_1} P_2$$

of generating 2-cells/diagrammatic pieces.

• consider the free 2-category P_2^* on (P_0, P_1, P_2) , made of all \star_0 and \star_1 -compositions of generating 2-cells,

• extend to the free linear 2-category
$$P_2^{\ell}$$
:
 $P_2^{\ell}(u, v) = \operatorname{Span}_{\mathbb{K}}[P_2^*(x, v)].$

- consider a cellular extension $P_3 \xrightarrow[t_2]{s_2} P_2^{\ell}$ containing oriented relations of the linear 2-category.
- Example: For the nilHecke 2-category:
 - $P_0 = \{\bullet\}$ and $P_1 = \{1\}$, so that $P_1^* = \mathbb{N}$ with $n := 1 \star_0 \cdots \star_0 1$.
 - $\blacktriangleright P_2 = \{ \begin{array}{|c|} & P_2 = \{ \begin{array}{|c|} & P_2 = 2 \end{array} \right.$

$$\blacktriangleright P_3 = \{ \overleftrightarrow{\Rightarrow} 0, \qquad \overleftrightarrow{\Rightarrow} \overleftrightarrow{\rightarrow}, \qquad \checkmark{\Rightarrow} \overleftrightarrow{\rightarrow} + | |, \qquad \checkmark{\Rightarrow} \overleftrightarrow{\rightarrow} - | | . \}$$

To sum up:

10/41 イロト 4 週 ト 4 茎 ト 4 茎 ト 茎 - のへで

- Linear 2-categories are presented by linear (3, 2)-polygraphs, that are quadruples (P_0, P_1, P_2, P_3) made of
 - ▶ a 1-polygraph (P_0, P_1) , on which we construct the free 1-category P_1^* ,
 - a cellular extension

$$P_2 \xrightarrow[t_1]{s_1} P_2$$

of generating 2-cells/diagrammatic pieces.

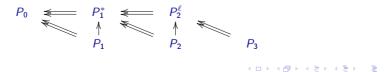
• consider the free 2-category P_2^* on (P_0, P_1, P_2) , made of all \star_0 and \star_1 -compositions of generating 2-cells,

• extend to the free linear 2-category
$$P_2^{\ell}$$
:
 $P_2^{\ell}(u, v) = \operatorname{Span}_{\mathbb{K}}[P_2^*(x, v)].$

- consider a cellular extension $P_3 \xrightarrow[t_2]{s_2} P_2^{\ell}$ containing oriented relations of the linear 2-category.
- Example: For the nilHecke 2-category:
 - $P_0 = \{\bullet\}$ and $P_1 = \{1\}$, so that $P_1^* = \mathbb{N}$ with $n := 1 \star_0 \cdots \star_0 1$.
 - $\blacktriangleright P_2 = \{ \searrow : 2 \to 2, \qquad \bullet : 1 \to 1 \}$

$$\blacktriangleright P_3 = \{ \overleftrightarrow{\Rightarrow} 0, \qquad \overleftrightarrow{\Rightarrow} \overleftrightarrow{\rightarrow}, \qquad \checkmark{\Rightarrow} \overleftrightarrow{\rightarrow} + | |, \qquad \checkmark{\Rightarrow} \overleftrightarrow{\rightarrow} - | | \cdot \}$$

To sum up:



6/41

- Linear 2-categories are presented by linear (3, 2)-polygraphs, that are quadruples (P_0, P_1, P_2, P_3) made of
 - ▶ a 1-polygraph (P_0, P_1) , on which we construct the free 1-category P_1^* ,
 - a cellular extension

$$P_2 \xrightarrow[t_1]{s_1} P_2$$

of generating 2-cells/diagrammatic pieces.

• consider the free 2-category P_2^* on (P_0, P_1, P_2) , made of all \star_0 and \star_1 -compositions of generating 2-cells,

• extend to the free linear 2-category
$$P_2^{\ell}$$
:
 $P_2^{\ell}(u, v) = \operatorname{Span}_{\mathbb{K}}[P_2^*(x, v)].$

- consider a cellular extension $P_3 \xrightarrow[t_2]{s_2} P_2^{\ell}$ containing oriented relations of the linear 2-category.
- Example: For the nilHecke 2-category:
 - $P_0 = \{\bullet\}$ and $P_1 = \{1\}$, so that $P_1^* = \mathbb{N}$ with $n := 1 \star_0 \cdots \star_0 1$.
 - $\blacktriangleright P_2 = \{ \begin{array}{|c|} & P_2 = \{ \begin{array}{|c|} & P_2 = 2 \end{array} \right.$

$$\blacktriangleright P_3 = \{ \overleftrightarrow{\Rightarrow} 0, \qquad \overleftrightarrow{\Rightarrow} \overleftrightarrow{\rightarrow}, \qquad \checkmark{\Rightarrow} \overleftrightarrow{\rightarrow} + | |, \qquad \checkmark{\Rightarrow} \overleftrightarrow{\rightarrow} - | | . \}$$

To sum up:

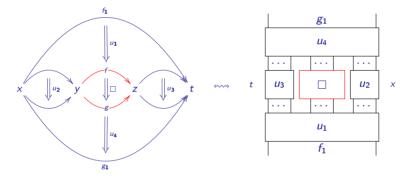
16/41

(4回) (4回) (4回)

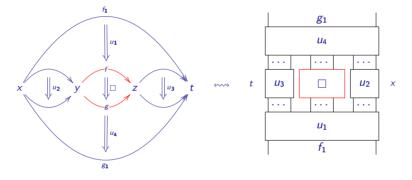
Let P be a linear (3, 2)-polygraph. A monomial of P is a 2-cell of the free 2-category P_2^* , that is a \star_0 , \star_1 -composition of generating 2-cells.

- Let P be a linear (3, 2)-polygraph. A monomial of P is a 2-cell of the free 2-category P_2^* , that is a \star_0 , \star_1 -composition of generating 2-cells.
- ► A context of C is a pair (S, c) where S = (f, g) is a 1-sphere of C, and c is a 2-cell in the 2-category C[S] such that the sphere S appears only once in c.

- Let P be a linear (3, 2)-polygraph. A monomial of P is a 2-cell of the free 2-category P_2^* , that is a \star_0 , \star_1 -composition of generating 2-cells.
- ► A context of C is a pair (S, c) where S = (f, g) is a 1-sphere of C, and c is a 2-cell in the 2-category C[S] such that the sphere S appears only once in c.
- Explicitly, *S* is a 'hole' and *c* is a 2-cell containing this hole only once:

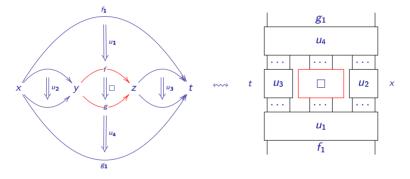


- Let P be a linear (3, 2)-polygraph. A monomial of P is a 2-cell of the free 2-category P_2^* , that is a \star_0 , \star_1 -composition of generating 2-cells.
- ► A context of C is a pair (S, c) where S = (f, g) is a 1-sphere of C, and c is a 2-cell in the 2-category C[S] such that the sphere S appears only once in c.
- Explicitly, *S* is a 'hole' and *c* is a 2-cell containing this hole only once:



A linear context of a linear 2-category has shape c := λu₁ ★₁ (u₂ ★₀ □ ★₀ u₃) ★₁ u₄ + h for a polynomial h. For u a 2-cell with source f and target g, we denote by c[f] the 2-cell λu₁ ★₁ (u₂ ★₀ u ★₀ u₃) ★₁ u₄.

- Let P be a linear (3, 2)-polygraph. A monomial of P is a 2-cell of the free 2-category P_2^* , that is a \star_0 , \star_1 -composition of generating 2-cells.
- ► A context of C is a pair (S, c) where S = (f, g) is a 1-sphere of C, and c is a 2-cell in the 2-category C[S] such that the sphere S appears only once in c.
- Explicitly, S is a 'hole' and c is a 2-cell containing this hole only once:



- A linear context of a linear 2-category has shape c := λu₁ ★₁ (u₂ ★₀ □ ★₀ u₃) ★₁ u₄ + h for a polynomial h. For u a 2-cell with source f and target g, we denote by c[f] the 2-cell λu₁ ★₁ (u₂ ★₀ u ★₀ u₃) ★₁ u₄.
- A rewriting step of P is a 3-cell of the form

$$c[\alpha]: c[s_2(\alpha)] \Rightarrow c[t_2(\alpha)]$$

for $\alpha \in P_3$ where c is a linear context such that the monomial $u_1 \star_1 (u_2 \star_0 s_2(\alpha) \star_0 u_3) \star_1 u_4$ does not appear in the polynomial h.

▶ The green condition is needed to avoid trivial non-termination: if $u \Rightarrow v$, then we have $-u \Rightarrow -v$, which implies

 $v = (u + v) - u \Rightarrow (u + v) - v = u.$

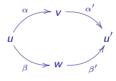
▶ The green condition is needed to avoid trivial non-termination: if $u \Rightarrow v$, then we have $-u \Rightarrow -v$, which implies

$$v = (u + v) - u \Rightarrow (u + v) - v = u.$$

Assumption : We consider left-monomial linear (3, 2)-polygraphs, that is for every α ∈ P₃, s₂(α) is a monomial.

$$v = (u + v) - u \Rightarrow (u + v) - v = u.$$

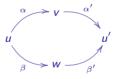
- Assumption : We consider left-monomial linear (3, 2)-polygraphs, that is for every α ∈ P₃, s₂(α) is a monomial.
- **•** Termination: There is no infinite rewriting sequences $u_1 \Rightarrow u_2 \Rightarrow \ldots$ with respect to *P*.
- **Branching**: It is a pair (α, β) of rewriting paths with the same 2-source u. It is local if α and β are rewriting steps (*i.e.* of length 1).
- (Local) Confluence: If for any (local) branching (α, β) , there exist rewriting paths (α', β') as follows:



The green condition is needed to avoid trivial non-termination: if u ⇒ v, then we have -u ⇒ -v, which implies

$$v = (u + v) - u \Rightarrow (u + v) - v = u.$$

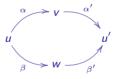
- Assumption : We consider left-monomial linear (3, 2)-polygraphs, that is for every α ∈ P₃, s₂(α) is a monomial.
- **•** Termination: There is no infinite rewriting sequences $u_1 \Rightarrow u_2 \Rightarrow \ldots$ with respect to *P*.
- **Branching**: It is a pair (α, β) of rewriting paths with the same 2-source u. It is local if α and β are rewriting steps (*i.e.* of length 1).
- (Local) Confluence: If for any (local) branching (α, β) , there exist rewriting paths (α', β') as follows:



▶ Theorem [Newman lemma]: If P is terminating, confluence and local confluence are equivalent.

$$v = (u + v) - u \Rightarrow (u + v) - v = u.$$

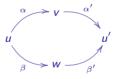
- Assumption : We consider left-monomial linear (3, 2)-polygraphs, that is for every α ∈ P₃, s₂(α) is a monomial.
- **•** Termination: There is no infinite rewriting sequences $u_1 \Rightarrow u_2 \Rightarrow \dots$ with respect to *P*.
- **Branching**: It is a pair (α, β) of rewriting paths with the same 2-source u. It is local if α and β are rewriting steps (*i.e.* of length 1).
- (Local) Confluence: If for any (local) branching (α, β) , there exist rewriting paths (α', β') as follows:



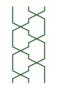
- ▶ Theorem [Newman lemma]: If P is terminating, confluence and local confluence are equivalent.
- A critical branching of P is a local branching (α, β) induced by an overlapping, and minimal for the order on branchings (f, g) ⊆ (c[f], c[g]).

$$v = (u + v) - u \Rightarrow (u + v) - v = u.$$

- Assumption : We consider left-monomial linear (3, 2)-polygraphs, that is for every α ∈ P₃, s₂(α) is a monomial.
- **•** Termination: There is no infinite rewriting sequences $u_1 \Rightarrow u_2 \Rightarrow \ldots$ with respect to *P*.
- **Branching**: It is a pair (α, β) of rewriting paths with the same 2-source u. It is local if α and β are rewriting steps (*i.e.* of length 1).
- (Local) Confluence: If for any (local) branching (α, β) , there exist rewriting paths (α', β') as follows:

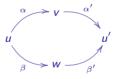


- ▶ Theorem [Newman lemma]: If P is terminating, confluence and local confluence are equivalent.
- A critical branching of P is a local branching (α, β) induced by an overlapping, and minimal for the order on branchings (f,g) ⊆ (c[f], c[g]).
- Example: for the nilHecke category,



$$v = (u + v) - u \Rightarrow (u + v) - v = u.$$

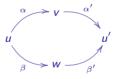
- Assumption : We consider left-monomial linear (3, 2)-polygraphs, that is for every α ∈ P₃, s₂(α) is a monomial.
- **•** Termination: There is no infinite rewriting sequences $u_1 \Rightarrow u_2 \Rightarrow \ldots$ with respect to *P*.
- **Branching**: It is a pair (α, β) of rewriting paths with the same 2-source u. It is local if α and β are rewriting steps (*i.e.* of length 1).
- (Local) Confluence: If for any (local) branching (α, β) , there exist rewriting paths (α', β') as follows:



- ▶ Theorem [Newman lemma]: If P is terminating, confluence and local confluence are equivalent.
- A critical branching of P is a local branching (α, β) induced by an overlapping, and minimal for the order on branchings (f,g) ⊆ (c[f], c[g]).
- Example: for the nilHecke category,

$$v = (u + v) - u \Rightarrow (u + v) - v = u.$$

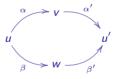
- Assumption : We consider left-monomial linear (3, 2)-polygraphs, that is for every α ∈ P₃, s₂(α) is a monomial.
- **Termination**: There is no infinite rewriting sequences $u_1 \Rightarrow u_2 \Rightarrow \ldots$ with respect to *P*.
- **Branching**: It is a pair (α, β) of rewriting paths with the same 2-source u. It is local if α and β are rewriting steps (*i.e.* of length 1).
- (Local) Confluence: If for any (local) branching (α, β) , there exist rewriting paths (α', β') as follows:



- ▶ Theorem [Newman lemma]: If P is terminating, confluence and local confluence are equivalent.
- A critical branching of P is a local branching (α, β) induced by an overlapping, and minimal for the order on branchings (f, g) ⊆ (c[f], c[g]).
- Example: for the nilHecke category,

$$v = (u + v) - u \Rightarrow (u + v) - v = u.$$

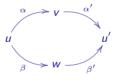
- Assumption : We consider left-monomial linear (3, 2)-polygraphs, that is for every α ∈ P₃, s₂(α) is a monomial.
- **•** Termination: There is no infinite rewriting sequences $u_1 \Rightarrow u_2 \Rightarrow \ldots$ with respect to *P*.
- **Branching**: It is a pair (α, β) of rewriting paths with the same 2-source u. It is local if α and β are rewriting steps (*i.e.* of length 1).
- (Local) Confluence: If for any (local) branching (α, β) , there exist rewriting paths (α', β') as follows:



- ▶ Theorem [Newman lemma]: If P is terminating, confluence and local confluence are equivalent.
- A critical branching of P is a local branching (α, β) induced by an overlapping, and minimal for the order on branchings (f,g) ⊆ (c[f], c[g]).
- Example: for the nilHecke category,

$$v = (u + v) - u \Rightarrow (u + v) - v = u.$$

- Assumption : We consider left-monomial linear (3, 2)-polygraphs, that is for every α ∈ P₃, s₂(α) is a monomial.
- **Termination**: There is no infinite rewriting sequences $u_1 \Rightarrow u_2 \Rightarrow \ldots$ with respect to *P*.
- **Branching**: It is a pair (α, β) of rewriting paths with the same 2-source u. It is local if α and β are rewriting steps (*i.e.* of length 1).
- (Local) Confluence: If for any (local) branching (α, β) , there exist rewriting paths (α', β') as follows:



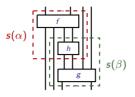
- ▶ Theorem [Newman lemma]: If P is terminating, confluence and local confluence are equivalent.
- A critical branching of P is a local branching (α, β) induced by an overlapping, and minimal for the order on branchings (f,g) ⊆ (c[f], c[g]).
- Example: for the nilHecke category,

► Critical branchings of a linear (3,2)-polygraph can be classified into three families:

► Critical branchings of a linear (3,2)-polygraph can be classified into three families:

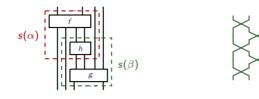
► Critical branchings of a linear (3,2)-polygraph can be classified into three families:

Regular:



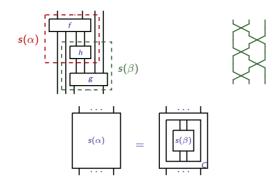
► Critical branchings of a linear (3,2)-polygraph can be classified into three families:

Regular:



► Critical branchings of a linear (3,2)-polygraph can be classified into three families:

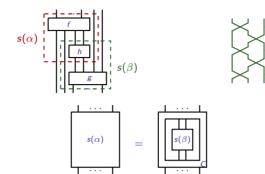
Regular:



Inclusion

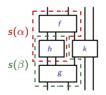
► Critical branchings of a linear (3,2)-polygraph can be classified into three families:

Regular:



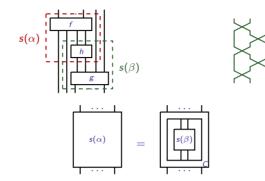
Inclusion:

Right-indexed (also left-indexed, multi-indexed):



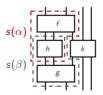
▶ Critical branchings of a linear (3,2)-polygraph can be classified into three families:

Regular:



Inclusion:

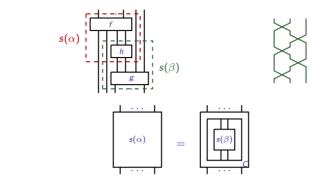
Right-indexed (also left-indexed, multi-indexed):



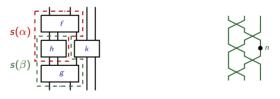
▶ Critical branchings of a linear (3,2)-polygraph can be classified into three families:

Regular:

Inclusion



Right-indexed (also left-indexed, multi-indexed):



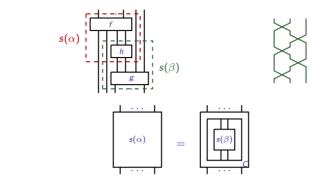
Critical branching lemma: A terminating linear (3,2)-polygraph is locally confluent if and only if all its critical branchings are confluent.

Critical branchings of linear (3,2)-polygraphs

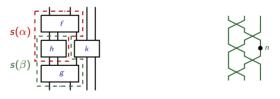
▶ Critical branchings of a linear (3,2)-polygraph can be classified into three families:

Regular:

Inclusion



Right-indexed (also left-indexed, multi-indexed):

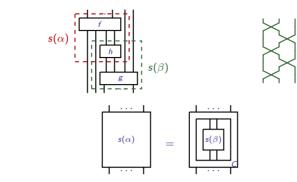


Critical branching lemma: A terminating linear (3,2)-polygraph is locally confluent if and only if all its critical branchings are confluent.

Critical branchings of linear (3,2)-polygraphs

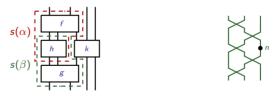
▶ Critical branchings of a linear (3,2)-polygraph can be classified into three families:

Regular:



Inclusion:

Right-indexed (also left-indexed, multi-indexed):



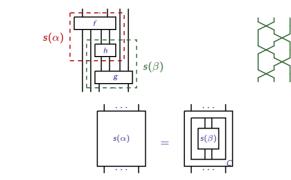
Critical branching lemma: A terminating linear (3,2)-polygraph is locally confluent if and only if all its critical branchings are confluent.

Theorem [Alleaume '16]: Let P be a left-monomial and convergent linear (3, 2)-polygraph, and C be the linear 2-category presented by P For any parallel 1-cells p, q of C, the set of monomials in normal form w.r.t P with 1-source p and 1-target q is a linear basis of C₂(p, q).

Critical branchings of linear (3,2)-polygraphs

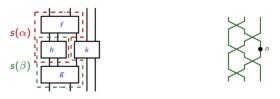
▶ Critical branchings of a linear (3,2)-polygraph can be classified into three families:

Regular:



Inclusion

Right-indexed (also left-indexed, multi-indexed):



- Critical branching lemma: A terminating linear (3,2)-polygraph is locally confluent if and only if all its critical branchings are confluent.
- Theorem [Alleaume '16]: Let P be a left-monomial and convergent linear (3, 2)-polygraph, and C be the linear 2-category presented by P For any parallel 1-cells p, q of C, the set of monomials in normal form w.r.t P with 1-source p and 1-target q is a linear basis of C₂(p, q).
- We need to find criteria to prove termination of linear (3, 2)-polygraphs, and then confluence is a check of critical branchings.

- ▶ In order to prove termination, we often want to define well-founded total orders satisfying:
 - $s_2(\alpha) \prec h$ for any monomial h in $t_2(\alpha)$,
 - $u \prec v \Rightarrow c[u] \prec c[v]$ for any context c.

- ▶ In order to prove termination, we often want to define well-founded total orders satisfying:
 - $s_2(\alpha) \prec h$ for any monomial h in $t_2(\alpha)$,
 - $u \prec v \Rightarrow c[u] \prec c[v]$ for any context c.
- ▶ If one may define such an order, it guarantees termination:

 $(u_1 \Rightarrow u_2 \Rightarrow \ldots \Rightarrow u_n \Rightarrow \ldots)$

- ▶ In order to prove termination, we often want to define well-founded total orders satisfying:
 - $s_2(\alpha) \prec h$ for any monomial h in $t_2(\alpha)$,
 - $u \prec v \Rightarrow c[u] \prec c[v]$ for any context c.
- ▶ If one may define such an order, it guarantees termination:

 $(u_1 \Rightarrow u_2 \Rightarrow \ldots \Rightarrow u_n \Rightarrow \ldots) \qquad \qquad u_i = C_i[u'_i], u_{i+1} = C_i[u'_{i+1}], u'_i \Rightarrow u'_{i+1} \in P_3$

- ▶ In order to prove termination, we often want to define well-founded total orders satisfying:
 - $s_2(\alpha) \prec h$ for any monomial h in $t_2(\alpha)$,
 - $u \prec v \Rightarrow c[u] \prec c[v]$ for any context c.
- ▶ If one may define such an order, it guarantees termination:

 $(u_1 \Rightarrow u_2 \Rightarrow \ldots \Rightarrow u_n \Rightarrow \ldots)$ $u_i = C_i[u'_i], u_{i+1} = C_i[u'_{i+1}], u'_i \Rightarrow u'_{i+1} \in P_3$

yields an infinite strictly decreasing sequence $(u_n)_{n\in\mathbb{N}}$ for \prec .

- ▶ In order to prove termination, we often want to define well-founded total orders satisfying:
 - $s_2(\alpha) \prec h$ for any monomial h in $t_2(\alpha)$,
 - $u \prec v \Rightarrow c[u] \prec c[v]$ for any context c.
- If one may define such an order, it guarantees termination:

 $(u_1 \Rightarrow u_2 \Rightarrow \ldots \Rightarrow u_n \Rightarrow \ldots)$ $u_i = C_i[u'_i], u_{i+1} = C_i[u'_{i+1}], u'_i \Rightarrow u'_{i+1} \in P_3$ yields an infinite strictly decreasing sequence $(u_n)_{n \in \mathbb{N}}$ for \prec .

- ▶ In the case of algebras, we often orient relations with respect to a monomial order:
 - \blacktriangleright < is a total order such that u < v implies wuw' < wvw' for any monomials w and w'.
 - **Example**: Degree lexicographic orders are monomial orders.
 - The linear 2-polygraph (●, {x, y, z}, {xyz ⇒ zxy + yx}) is terminating using the degree lexicographic orde on x > y > z.

- In order to prove termination, we often want to define well-founded total orders satisfying:
 - $s_2(\alpha) \prec h$ for any monomial h in $t_2(\alpha)$,
 - $u \prec v \Rightarrow c[u] \prec c[v]$ for any context c.
- If one may define such an order, it guarantees termination:

 $(u_1 \Rightarrow u_2 \Rightarrow \ldots \Rightarrow u_n \Rightarrow \ldots)$ $u_i = C_i[u'_i], u_{i+1} = C_i[u'_{i+1}], u'_i \Rightarrow u'_{i+1} \in P_3$ yields an infinite strictly decreasing sequence $(u_n)_{n \in \mathbb{N}}$ for \prec .

- In the case of algebras, we often orient relations with respect to a monomial order.
 - \blacktriangleright < is a total order such that u < v implies wuw' < wvw' for any monomials w and w'.
 - **Example**: Degree lexicographic orders are monomial orders.
 - The linear 2-polygraph (●, {x, y, z}, {xyz ⇒ zxy + yx}) is terminating using the degree lexicographic orde on x > y > z.
- Such an order is difficult to define for linear 2-categories, because of the operations \star_0 and \star_1 .
- Example : Take $A = \mathbb{K}[S_3]$, and the relation

• Count the number of s with $s = \bigvee_{i=1}^{n} |_{i=1}^{n}$. This doesn't work in \mathcal{NH} since we can plug diagrams on the left and right.

- ▶ In order to prove termination, we often want to define well-founded total orders satisfying:
 - $s_2(\alpha) \prec h$ for any monomial h in $t_2(\alpha)$,
 - $u \prec v \Rightarrow c[u] \prec c[v]$ for any context c.
- If one may define such an order, it guarantees termination:

 $(u_1 \Rightarrow u_2 \Rightarrow \ldots \Rightarrow u_n \Rightarrow \ldots)$ $u_i = C_i[u'_i], u_{i+1} = C_i[u'_{i+1}], u'_i \Rightarrow u'_{i+1} \in P_3$ yields an infinite strictly decreasing sequence $(u_n)_{n \in \mathbb{N}}$ for \prec .

- In the case of algebras, we often orient relations with respect to a monomial order:
 - \blacktriangleright < is a total order such that u < v implies wuw' < wvw' for any monomials w and w'.
 - **Example**: Degree lexicographic orders are monomial orders.
 - The linear 2-polygraph (●, {x, y, z}, {xyz ⇒ zxy + yx}) is terminating using the degree lexicographic orde on x > y > z.
- ▶ Such an order is difficult to define for linear 2-categories, because of the operations ★0 and ★1.
- Example : Take $A = \mathbb{K}[S_3]$, and the relation

- Count the number of s with $s = \bigvee_{i=1}^{n} |_{i=1}^{n}$. This doesn't work in \mathcal{NH} since we can plug diagrams on the left and right.
- The correct setting to define these orders is the one of derivations, as introduced by Guiraud '04 and Guiraud-Malbos '09.

- ► Idea of the construction:
 - Each 2-cell is seen as an electronical circuit whose components are given by the generating 2-cells.
 - Each generator will receive a certain intensity of ascending and descending currents, calculated with mappings X and Y on generators, extended functorially.

- Each 2-cell is seen as an electronical circuit whose components are given by the generating 2-cells.
- Each generator will receive a certain intensity of ascending and descending currents, calculated with mappings X and Y on generators, extended functorially.
- Any 2-cell will produce some heat, which is calculated by the sum of heats produced by any of its components, depending on they intensity of current they receive.
- Heats are calculated using derivations d.
- Two circuits are compared by heat they produce when receiving the same intensity of ascending and descending current in input:

 $f \prec g$ iff d(f) < d(g).

- Each 2-cell is seen as an electronical circuit whose components are given by the generating 2-cells.
- Each generator will receive a certain intensity of ascending and descending currents, calculated with mappings X and Y on generators, extended functorially.
- Any 2-cell will produce some heat, which is calculated by the sum of heats produced by any of its components, depending on they intensity of current they receive.
- Heats are calculated using derivations d.
- Two circuits are compared by heat they produce when receiving the same intensity of ascending and descending current in input:

 $f \prec g$ iff d(f) < d(g).

We extend this to polynomials by setting

 $f \prec g$ iff d(f) < d(h) for any monomial h in g.

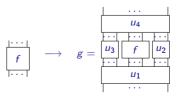
- Each 2-cell is seen as an electronical circuit whose components are given by the generating 2-cells.
- Each generator will receive a certain intensity of ascending and descending currents, calculated with mappings X and Y on generators, extended functorially.
- Any 2-cell will produce some heat, which is calculated by the sum of heats produced by any of its components, depending on they intensity of current they receive.
- Heats are calculated using derivations d.
- Two circuits are compared by heat they produce when receiving the same intensity of ascending and descending current in input:

 $f \prec g$ iff d(f) < d(g).

We extend this to polynomials by setting

 $f \prec g$ iff d(f) < d(h) for any monomial h in g.

- ► Given a 2-category C, define the category of contexts C[C] of C by:
 - ▶ 0-cells: 2-cells of C,
 - ▶ 1-cells from f to g: contexts $((s_1(f), t_1(f)), c)$ such that c[f] = g:



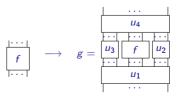
- Each 2-cell is seen as an electronical circuit whose components are given by the generating 2-cells.
- Each generator will receive a certain intensity of ascending and descending currents, calculated with mappings X and Y on generators, extended functorially.
- Any 2-cell will produce some heat, which is calculated by the sum of heats produced by any of its components, depending on they intensity of current they receive.
- Heats are calculated using derivations d.
- Two circuits are compared by heat they produce when receiving the same intensity of ascending and descending current in input:

 $f \prec g$ iff d(f) < d(g).

We extend this to polynomials by setting

 $f \prec g$ iff d(f) < d(h) for any monomial h in g.

- ► Given a 2-category C, define the category of contexts C[C] of C by:
 - ▶ 0-cells: 2-cells of C,
 - ▶ 1-cells from f to g: contexts $((s_1(f), t_1(f)), c)$ such that c[f] = g:



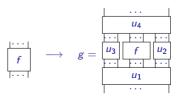
- Each 2-cell is seen as an electronical circuit whose components are given by the generating 2-cells.
- Each generator will receive a certain intensity of ascending and descending currents, calculated with mappings X and Y on generators, extended functorially.
- Any 2-cell will produce some heat, which is calculated by the sum of heats produced by any of its components, depending on they intensity of current they receive.
- Heats are calculated using derivations d.
- Two circuits are compared by heat they produce when receiving the same intensity of ascending and descending current in input:

 $f \prec g$ iff d(f) < d(g).

We extend this to polynomials by setting

 $f \prec g$ iff d(f) < d(h) for any monomial h in g.

- ► Given a 2-category C, define the category of contexts C[C] of C by:
 - ▶ 0-cells: 2-cells of C,
 - ▶ 1-cells from f to g: contexts $((s_1(f), t_1(f)), c)$ such that c[f] = g:



A C-module is a functor $M : \mathbb{C}[C] \to Ab$, where Ab is the category of abelian groups.

- **Exemple**: In the case of 2-categories, we construct prototypical modules. Let **Ord** be the 2-category with one 0-cell, 1-cells are partially ordered sets, and 2-cells are monotone maps.
- Fix an internal abelian group G in Ord, and $X : C \to \text{Ord}, Y : C^{\text{op}} \to \text{Ord}$ two 2-functors.

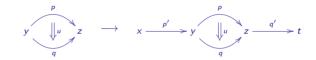
- **Exemple**: In the case of 2-categories, we construct prototypical modules. Let **Ord** be the 2-category with one 0-cell, 1-cells are partially ordered sets, and 2-cells are monotone maps.
- Fix an internal abelian group G in Ord, and $X : \mathcal{C} \to \text{Ord}, Y : \mathcal{C}^{op} \to \text{Ord}$ two 2-functors.
- ▶ We define a C-module $M_{X,Y,G}$ as follows:
 - A 2-cell $u: p \Rightarrow q$ is sent to $M(u) = \operatorname{Ord}(X(p) \times Y(q), G)$,

- Exemple: In the case of 2-categories, we construct prototypical modules. Let Ord be the 2-category with one 0-cell, 1-cells are partially ordered sets, and 2-cells are monotone maps.
- Fix an internal abelian group G in Ord, and $X : \mathcal{C} \to \text{Ord}, Y : \mathcal{C}^{op} \to \text{Ord}$ two 2-functors.
- ▶ We define a C-module $M_{X,Y,G}$ as follows:
 - A 2-cell $u: p \Rightarrow q$ is sent to $M(u) = \operatorname{Ord}(X(p) \times Y(q), G)$,
 - If $p, q \in C_1$ and c is a context from $u : p \Rightarrow q$ to $p' \star_0 u \star_0 q'$:

$$y \underbrace{\qquad \qquad }_{a}^{p} z \longrightarrow x \underbrace{\qquad \qquad }_{p'}^{p} y \underbrace{\qquad \qquad }_{a}^{p} z \underbrace{\qquad \qquad }_{q'}^{p} t$$

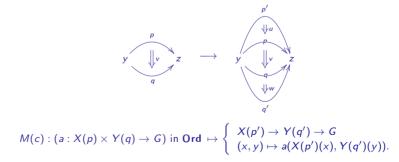
 $M(c): (a: X(p) \times Y(q) \to G) \text{ in } \mathbf{Ord} \mapsto \begin{cases} X(p') \times X(p) \times X(q') \times Y(p') \times Y(q) \times Y(q') \to G \\ (x', x, x'', y', y, y'') \mapsto a(x, y). \end{cases}$

- Exemple: In the case of 2-categories, we construct prototypical modules. Let Ord be the 2-category with one 0-cell, 1-cells are partially ordered sets, and 2-cells are monotone maps.
- Fix an internal abelian group G in Ord, and $X : \mathcal{C} \to \text{Ord}, Y : \mathcal{C}^{op} \to \text{Ord}$ two 2-functors.
- ▶ We define a *C*-module $M_{X,Y,G}$ as follows:
 - A 2-cell $u: p \Rightarrow q$ is sent to $M(u) = \operatorname{Ord}(X(p) \times Y(q), G)$,
 - If $p, q \in C_1$ and c is a context from $u : p \Rightarrow q$ to $p' \star_0 u \star_0 q'$:

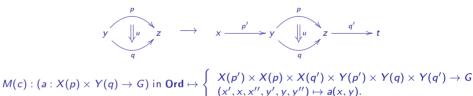


 $M(c): (a: X(p) \times Y(q) \to G) \text{ in } \mathbf{Ord} \mapsto \begin{cases} X(p') \times X(p) \times X(q') \times Y(p') \times Y(q) \times Y(q') \to G \\ (x', x, x'', y', y, y'') \mapsto a(x, y). \end{cases}$

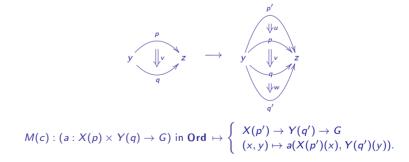
• If $u: p' \Rightarrow p$ and $w: q \Rightarrow q'$ are 2-cells, and c is a context from $v: p \Rightarrow q$ to $u \star_1 v \star_1 w$.



- Exemple: In the case of 2-categories, we construct prototypical modules. Let Ord be the 2-category with one 0-cell, 1-cells are partially ordered sets, and 2-cells are monotone maps.
- Fix an internal abelian group G in Ord, and $X : \mathcal{C} \to \text{Ord}, Y : \mathcal{C}^{op} \to \text{Ord}$ two 2-functors.
- ▶ We define a *C*-module $M_{X,Y,G}$ as follows:
 - A 2-cell $u: p \Rightarrow q$ is sent to $M(u) = \operatorname{Ord}(X(p) \times Y(q), G)$,
 - If $p,q \in C_1$ and c is a context from $u: p \Rightarrow q$ to $p' \star_0 u \star_0 q'$:



If $u: p' \Rightarrow p$ and $w: q \Rightarrow q'$ are 2-cells, and c is a context from $v: p \Rightarrow q$ to $u \star_1 v \star_1 w$.



▶ When $C = P_2^*$ is freely generated by a 2-polygraph, such a C-module is uniquely determined by X(p) and Y(p) for $p \in P_1$ and morphisms $X(u) : X(p) \to X(q)$ and $Y(u) : Y(q) \to Y(p)$ for every $u : p \Rightarrow q \in P_2$.

Termination using derivations

A derivation of a 2-category C into a C-module M is a map sending every 2-cell u in C to an element $d(u) \in M(u)$ such that

 $d(u \star_i v) = u \star_i d(v) + d(u) \star_i v,$

where $u \star_i d(v) = M(u \star_i \Box)(d(v))$ and $d(u) \star_i v = M(\Box \star_i v)(d(u))$.

A derivation of a 2-category C into a C-module M is a map sending every 2-cell u in C to an element $d(u) \in M(u)$ such that

 $d(u \star_i v) = u \star_i d(v) + d(u) \star_i v,$

where $u \star_i d(v) = M(u \star_i \Box)(d(v))$ and $d(u) \star_i v = M(\Box \star_i v)(d(u))$.

- ▶ Theorem [Guiraud-Malbos '09]: Let P be a (3,2)-linear polygraph. If there exist
 - Two 2-functors $X : P_2^* \to \text{Ord}$ and $Y : (P_2^*)^{\text{op}} \to \text{Ord}$ such that for every 1-cell p in P_1 , the sets X(p) and Y(p) are non-empty and for every generating 3-cell α in P_3 , the inequalities $X(s_2(\alpha)) \ge X(h)$ and $Y(s_2(\alpha)) \ge Y(h)$ hold for every non identity monomial h in $t_2(\alpha)$.
 - An abelian group G in Ord whose addition is strictly monotone in both arguments and such that every decreasing sequence of non-negative elements of G is stationary.
 - A derivation of P_2^* into the P_2^* -module $M_{X,Y,G}$ such that for every 2-cell of $u \in P_2^*$, we have $d(u) \ge 0$, and for every generating 3-cell α in P_3 , $d(s_2(\alpha)) > d(h)$ for every monomial h in $t_2(\alpha)$.

Then the linear (3, 2)-polygraph P terminates.

A derivation of a 2-category C into a C-module M is a map sending every 2-cell u in C to an element $d(u) \in M(u)$ such that

 $d(u \star_i v) = u \star_i d(v) + d(u) \star_i v,$

where $u \star_i d(v) = M(u \star_i \Box)(d(v))$ and $d(u) \star_i v = M(\Box \star_i v)(d(u))$.

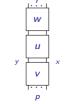
▶ Theorem [Guiraud-Malbos '09]: Let P be a (3,2)-linear polygraph. If there exist

- Two 2-functors $X : P_2^* \to \text{Ord}$ and $Y : (P_2^*)^{\text{op}} \to \text{Ord}$ such that for every 1-cell p in P_1 , the sets X(p) and Y(p) are non-empty and for every generating 3-cell α in P_3 , the inequalities $X(s_2(\alpha)) \ge X(h)$ and $Y(s_2(\alpha)) \ge Y(h)$ hold for every non identity monomial h in $t_2(\alpha)$.
- An abelian group G in Ord whose addition is strictly monotone in both arguments and such that every decreasing sequence of non-negative elements of G is stationary.
- A derivation of P_2^* into the P_2^* -module $M_{X,Y,G}$ such that for every 2-cell of $u \in P_2^*$, we have $d(u) \ge 0$, and for every generating 3-cell α in P_3 , $d(s_2(\alpha)) > d(h)$ for every monomial h in $t_2(\alpha)$.

Then the linear (3, 2)-polygraph *P* terminates.

▶ In general, we consider $G = \mathbb{Z}$ and Y to be the trivial 2-functor, that is $Y(p) = \emptyset$ for any $p \in P_1$, and Y(u) is the trivial map $Y(q) \Rightarrow Y(p)$ for $u : p \Rightarrow q \in P_2$.

One might forget about the Y in the definition of M_{X,Y,G}:



 $a\mapsto : \ (X(p')\times X(p)\times X(q')\to G, (x',x,x'')\mapsto a(x)) \quad a\mapsto (X(p')\to G, (x,y)\mapsto a(X(p')(x)))\,.$

 $X(s_2(f)) \ge X(h), \quad Y(s_2(f)) \ge Y(h), \quad d(s_2(f)) > d(h) \text{ for } f \in A, h \text{ monomial in } t_2(f) \text{ and}$ $d(s_2(g)) \ge d(k) \text{ for } g \in B \text{ and } k \text{ monomial in } t_2(b).$

Then P terminates if $P' = (P_0, P_1, P_2, B)$ terminates.

 $X(s_2(f)) \ge X(h), \quad Y(s_2(f)) \ge Y(h), \quad d(s_2(f)) > d(h) \text{ for } f \in A, h \text{ monomial in } t_2(f) \text{ and}$ $d(s_2(g)) \ge d(k) \text{ for } g \in B \text{ and } k \text{ monomial in } t_2(b).$

Then P terminates if $P' = (P_0, P_1, P_2, B)$ terminates.

Example: Consider the linear (3,2)-polygraph of permutations P_{Sym} defined by $P_0 = \{\bullet\}, P_1 = \{1\}, P_1 = \{1\}, P_2 = \{1\}, P_3 = \{1\}, P_3 = \{1\}, P_4 = \{1\}, P_$

$$P_2 = \{ \succ \}, \qquad P_3 = \{ \varsigma \Rightarrow 0, \qquad \varsigma \Rightarrow \varsigma \Rightarrow \cdot \}$$

 $X(s_2(f)) \ge X(h), \quad Y(s_2(f)) \ge Y(h), \quad d(s_2(f)) > d(h) \text{ for } f \in A, h \text{ monomial in } t_2(f) \text{ and}$ $d(s_2(g)) \ge d(k) \text{ for } g \in B \text{ and } k \text{ monomial in } t_2(b).$

Then P terminates if $P' = (P_0, P_1, P_2, B)$ terminates.

Example: Consider the linear (3,2)-polygraph of permutations P_{Sym} defined by $P_0 = \{\bullet\}, P_1 = \{1\}, P_1 = \{1\}, P_2 = \{1\}, P_3 = \{1\}, P_3 = \{1\}, P_4 = \{1\}, P_$

▶ Proof of termination: Consider Y trivial, $X(1) = \mathbb{N}$, so that $X(1 \star_0 1) = \mathbb{N} \times \mathbb{N}$, and set

$$X(\succ)(n,m) = (m,n+1)$$
 $d(\succ)(n,m) = m.$

 $X(s_2(f)) \ge X(h), \quad Y(s_2(f)) \ge Y(h), \quad d(s_2(f)) > d(h) \text{ for } f \in A, h \text{ monomial in } t_2(f) \text{ and}$ $d(s_2(g)) \ge d(k) \text{ for } g \in B \text{ and } k \text{ monomial in } t_2(b).$

Then P terminates if $P' = (P_0, P_1, P_2, B)$ terminates.

Example: Consider the linear (3,2)-polygraph of permutations P_{Sym} defined by $P_0 = \{\bullet\}, P_1 = \{1\}, P_$

▶ Proof of termination: Consider Y trivial, $X(1) = \mathbb{N}$, so that $X(1 \star_0 1) = \mathbb{N} \times \mathbb{N}$, and set

$$X(\succ)(n,m) = (m,n+1)$$
 $d(\succ)(n,m) = m.$

▶ With these assignments, conditions of the theorem are satisfied:

$$X(\swarrow)(n,m) = X(\swarrow)(m,n+1) = (n+1,m+1) \ge 0$$

 $X(s_2(f)) \ge X(h), \quad Y(s_2(f)) \ge Y(h), \quad d(s_2(f)) > d(h) \text{ for } f \in A, h \text{ monomial in } t_2(f) \text{ and}$ $d(s_2(g)) \ge d(k) \text{ for } g \in B \text{ and } k \text{ monomial in } t_2(b).$

Then P terminates if $P' = (P_0, P_1, P_2, B)$ terminates.

Example: Consider the linear (3,2)-polygraph of permutations P_{Sym} defined by $P_0 = \{\bullet\}, P_1 = \{1\}, P_$

▶ Proof of termination: Consider Y trivial, $X(1) = \mathbb{N}$, so that $X(1 \star_0 1) = \mathbb{N} \times \mathbb{N}$, and set

$$X(\succ)(n,m) = (m,n+1)$$
 $d(\succ)(n,m) = m.$

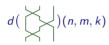
▶ With these assignments, conditions of the theorem are satisfied:

$$X(\swarrow)(n,m) = X(\swarrow)(m,n+1) = (n+1,m+1) \ge 0$$
$$X(\swarrow)(n,m,k) = X(\swarrow)(n,k,m+1) = X(\Join)(k,n+1,m+1)$$
$$= (k,m+1,n+2) = X(\checkmark)(n,m,k)$$

24/41 ▲□▶▲@▶▲콜▶▲콜▶ 콜 ∽੧<

► Recall that

$$X(\succ)(n,m) = (m,n+1) \quad d(\succ)(n,m) = m.$$



► Recall that

$$X(\succ)(n,m) = (m,n+1) \quad d(\succ)(n,m) = m.$$

$$d(\swarrow)(n,m,k) = d(\varkappa^{1})(n,m,k)$$

► Recall that

$$X(\succ)(n,m) = (m,n+1) \quad d(\succ)(n,m) = m.$$

$$d(\swarrow)(n,m,k) = d(\swarrow^{1})(n,m,k) = d(\bowtie^{1})(n,m,k) + d(\swarrow)(X(\bowtie^{1}))(n,m,k)$$

► Recall that

$$X(\succ)(n,m) = (m,n+1) \quad d(\succ)(n,m) = m.$$

$$d(\swarrow)(n,m,k) = d(\swarrow^{1})(n,m,k) = d(\succ^{1})(n,m,k) + d(\succ^{1})(X(\succ^{1})(n,m,k))$$
$$= d(\succ)(m,k) + d(\succ^{1})(n,k,m+1)$$

► Recall that

$$X(\succ)(n,m) = (m,n+1) \quad d(\succ)(n,m) = m.$$

$$d(\swarrow)(n,m,k) = d(\swarrow^{1})(n,m,k) = d(\curlyvee)(n,m,k) + d(\curlyvee)(X(\curlyvee)(n,m,k))$$
$$= d(\curlyvee)(m,k) + d(\curlyvee)(n,k,m+1)$$
$$= k + d(|\checkmark)(n,k,m+1) + d(\curlyvee)(k,n+1,m+1)$$

► Recall that

$$X(\succ)(n,m) = (m,n+1) \quad d(\succ)(n,m) = m.$$

$$d(\swarrow)(n,m,k) = d(\swarrow^{1})(n,m,k) = d(\curlyvee)(n,m,k) + d(\curlyvee)(X(\curlyvee)(n,m,k))$$
$$= d(\curlyvee)(m,k) + d(\curlyvee)(n,k,m+1)$$
$$= k + d(|\checkmark)(n,k,m+1) + d(\curlyvee)(k,n+1,m+1)$$
$$= 2k + m + 1$$

► Recall that

$$X(\succ)(n,m) = (m,n+1)$$
 $d(\succ)(n,m) = m.$

• Compute the values of $d(s_2(B))$ and $d(t_2(B))$:

$$d(\swarrow)(n,m,k) = d(\swarrow^{1})(n,m,k) = d(\curlyvee)(n,m,k) + d(\curlyvee)(X(\curlyvee)(n,m,k))$$
$$= d(\curlyvee)(m,k) + d(\curlyvee)(n,k,m+1)$$
$$= k + d(|\checkmark)(n,k,m+1) + d(\curlyvee)(k,n+1,m+1)$$
$$= 2k + m + 1$$

► Similarly,

$$d(\swarrow) = d(| \succ)(n, m, k) + d(\succ)(m, n+1, k) + d(| \succ)(m, k, n+2)$$
$$= m + 2k.$$
$$d(\swarrow)(n, m) = d(\succ)(n, m) + d(\succ)(m, n+1) = n + m + 1.$$

25/41 ▲□▶ ▲콜▶ ▲콜▶ ▲콜▶ 콜 ∽��~

Termination using derivations: an example

► Recall that

$$X(\succ)(n,m) = (m,n+1) \quad d(\succ)(n,m) = m.$$

• Compute the values of $d(s_2(B))$ and $d(t_2(B))$:

$$d(\swarrow)(n,m,k) = d(\swarrow^{1})(n,m,k) = d(\curlyvee)(n,m,k) + d(\curlyvee)(X(\curlyvee)(n,m,k))$$
$$= d(\curlyvee)(m,k) + d(\curlyvee)(n,k,m+1)$$
$$= k + d(|\checkmark)(n,k,m+1) + d(\curlyvee)(k,n+1,m+1)$$
$$= 2k + m + 1$$

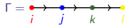
► Similarly,

$$d(\swarrow) = d(| \swarrow)(n, m, k) + d(\bowtie)(m, n+1, k) + d(| \swarrow)(m, k, n+2)$$
$$= m + 2k.$$
$$d(\swarrow)(n, m) = d(\swarrow)(n, m) + d(\rightarrowtail)(m, n+1) = n + m + 1.$$

Therefore, X and d satisfy the required conditions, and the linear (3,2)-polygraph of permutations is terminating.

These algebras appear in the process of categorifying a quantum groupe U_q(g) associated with a symmetrizable Kac-Moody algebra g.

- These algebras appear in the process of categorifying a quantum groupe U_q(g) associated with a symmetrizable Kac-Moody algebra g.
- Let Γ be the Dynkin diagram of g, with set of vertices *I*, seen as colors.



- ▶ These algebras appear in the process of categorifying a quantum groupe $U_q(g)$ associated with a symmetrizable Kac-Moody algebra g.
- Let Γ be the Dynkin diagram of g, with set of vertices *I*, seen as colors.

$$\Gamma = \underbrace{\bullet \rightarrow \bullet \rightarrow \bullet}_{i \quad j \quad k \quad l} \quad (\Gamma \text{ simply laced})$$

- These algebras appear in the process of categorifying a quantum groupe U_q(g) associated with a symmetrizable Kac-Moody algebra g.
- Let Γ be the Dynkin diagram of \mathfrak{g} , with set of vertices I, seen as colors.

$$\Gamma = \underbrace{\stackrel{\bullet}{\longrightarrow} \quad \stackrel{\bullet}{\longrightarrow} \quad \stackrel{\bullet}{\longrightarrow} \quad \stackrel{\bullet}{\longrightarrow} \quad (\Gamma \text{ simply laced})$$

Let $\mathcal{V} = \sum_{i \in I} \nu_i i$ be an element of $\mathbb{N}[I]$, we consider the set $\operatorname{Seq}(\mathcal{V})$ of sequels of elements of Γ where *i* appears \mathcal{V}_i times.

- These algebras appear in the process of categorifying a quantum groupe U_q(g) associated with a symmetrizable Kac-Moody algebra g.
- Let Γ be the Dynkin diagram of g, with set of vertices *I*, seen as colors.

$$\Gamma = \underbrace{\stackrel{\bullet}{\longrightarrow} \quad \stackrel{\bullet}{\longrightarrow} \quad \stackrel{\bullet}{\longrightarrow} \quad \stackrel{\bullet}{\longrightarrow} \quad (\Gamma \text{ simply laced})$$

Let $\mathcal{V} = \sum_{i \in I} \nu_i$ is be an element of $\mathbb{N}[I]$, we consider the set $\operatorname{Seq}(\mathcal{V})$ of sequels of elements of Γ where *i* appears \mathcal{V}_i times.

• Exemple: $Seq(2i + k) = \{iik, iki, kii\}$

- These algebras appear in the process of categorifying a quantum groupe U_q(g) associated with a symmetrizable Kac-Moody algebra g.
- Let Γ be the Dynkin diagram of g, with set of vertices *I*, seen as colors.

$$\Gamma = \underbrace{\stackrel{\bullet}{\longrightarrow} \quad \stackrel{\bullet}{\longrightarrow} \quad \stackrel{\bullet}{\longrightarrow} \quad \stackrel{\bullet}{\longrightarrow} \quad (\Gamma \text{ simply laced})$$

- Let $\mathcal{V} = \sum_{i \in I} \nu_i$ is be an element of $\mathbb{N}[I]$, we consider the set $\operatorname{Seq}(\mathcal{V})$ of sequels of elements of Γ where *i* appears \mathcal{V}_i times.
 - Exemple: $Seq(2i + k) = \{iik, iki, kii\}$
- For such an element \mathcal{V} , we define an algebra $R(\mathcal{V})$.
- ► Theorem [Khovanov-Lauda '08]: If $R = \bigoplus_{\mathcal{V} \in \mathbb{N}[I]} R(\mathcal{V})$, $K_0(R - pmod) \simeq \mathsf{U}_a^-(\mathfrak{g})$

- These algebras appear in the process of categorifying a quantum groupe U_q(g) associated with a symmetrizable Kac-Moody algebra g.
- ► Let Γ be the Dynkin diagram of \mathfrak{g} , with set of vertices I, seen as colors.

$$\Gamma = \underbrace{\stackrel{\bullet}{\longrightarrow} \quad \stackrel{\bullet}{\longrightarrow} \quad \stackrel{\bullet}{\longrightarrow} \quad \stackrel{\bullet}{\longrightarrow} \quad (\Gamma \text{ simply laced})$$

- Let $\mathcal{V} = \sum_{i \in I} \nu_i i$ be an element of $\mathbb{N}[I]$, we consider the set $\operatorname{Seq}(\mathcal{V})$ of sequels of elements of Γ where *i* appears \mathcal{V}_i times.
 - Exemple: $Seq(2i + k) = \{iik, iki, kii\}$
- For such an element \mathcal{V} , we define an algebra $R(\mathcal{V})$.
- ► Theorem [Khovanov-Lauda '08]: If $R = \bigoplus_{\mathcal{V} \in \mathbb{N}[I]} R(\mathcal{V})$, $K_0(R - pmod) \simeq \mathsf{U}_a^-(\mathfrak{g})$

 \blacktriangleright $R(\mathcal{V})$ is generated by

for any $i = i_1 \dots i_m \in Seq(\mathcal{V})$, $1 \le k \le m$ and $1 \le \ell < m$.

► Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \to \bullet \to \bullet \to \bullet \bullet)$

i) Same color:

ii) Distant colors:

 $\begin{vmatrix} \mathbf{x} \\ \mathbf{x}$

iv) Different colors:

 $\times = \times$ $\times = \times$

vi) Braid relations:

= + and otherwise = +

► Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \to \bullet \to \bullet \to \bullet \bullet)$

i) Same color:

 $\bigvee_{\Rightarrow 0} \qquad \qquad \bigvee_{\Rightarrow} \bigvee_{+} | | , \qquad \bigvee_{\Rightarrow} \bigvee_{-} | |$

ii) Distant colors:

X⇒||

iii) Close colors: $\bigotimes \Rightarrow \quad \blacklozenge \quad + \quad \blacklozenge$

iv) Different colors:

vi) Braid relations:

► Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \to \bullet \to \bullet \to \bullet)$

i) Same color:

 $\left| \begin{array}{c} \swarrow \\ \Rightarrow \end{array} \right| 0 \qquad \left| \begin{array}{c} \swarrow \\ \Rightarrow \end{array} \right| \left| \begin{array}{c} \swarrow \\ \Rightarrow \end{array} \right| + \left| \begin{array}{c} \downarrow \\ \Rightarrow \end{array} \right| , \quad \left| \begin{array}{c} \swarrow \\ \Rightarrow \end{array} \right| \left| \begin{array}{c} \swarrow \\ \Rightarrow \end{array} \right| \right| \right|$

ii) Distant colors: $\bigotimes \Rightarrow | |$

iii) Close colors:

iv) Different colors:

vi) Braid relations:

 \Join

▶ Theorem [D. '19]: This linear (3,2)-polygraph is convergent.

► Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \to \bullet \to \bullet \to \bullet)$ i) Same color: $\bigvee_{\Rightarrow 0} \quad \qquad \bigvee_{\Rightarrow} \bigvee_{+} | \mid , \quad \bigvee_{+} \Rightarrow \bigvee_{-} | \mid$ ii) Distant colors: iii) Close colors:

X⇒ | |

iv) Different colors:

vi) Braid relations:

 \Join

Theorem [D. '19]: This linear (3, 2)-polygraph is convergent.

Termination: use derivations in two steps, values on generators are independent of the colors.

► Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \to \bullet \to \bullet \to \bullet)$

i) Same color:

X ⇒ 0 iii) Close colors: X⇒ | |

iv) Different colors:

ii) Distant colors:

vi) Braid relations:

- **Theorem [D**. '**19**]: This linear (3, 2)-polygraph is convergent.
 - Termination: use derivations in two steps, values on generators are independent of the colors.
 - Confluence: exhaustive study of all critical branchings.

► Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \to \bullet \to \bullet \to \bullet)$

i) Same color:

iv) Different colors:

ii) Distant colors:

vi) Braid relations:

- **Theorem** [D. '19]: This linear (3, 2)-polygraph is convergent.
 - Termination: use derivations in two steps, values on generators are independent of the colors.
 - Confluence: exhaustive study of all critical branchings.

► Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \to \bullet \to \bullet \to \bullet)$

i) Same color:

iv) Different colors:

ii) Distant colors:

vi) Braid relations:

- **Theorem** [D. '19]: This linear (3, 2)-polygraph is convergent.
 - Termination: use derivations in two steps, values on generators are independent of the colors.
 - Confluence: exhaustive study of all critical branchings.

► Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \to \bullet \to \bullet \to \bullet)$

i) Same color:

 $\begin{array}{c} \overleftrightarrow{} \Rightarrow 0 \end{array} \qquad \begin{array}{c} \overleftrightarrow{} \Rightarrow \overleftrightarrow{} + 1 \\ \vdots \end{array} , \qquad \begin{array}{c} \swarrow{} \Rightarrow \end{array} \end{array} \xrightarrow{} - 1 \\ \vdots \end{array}$ $\begin{array}{c} \vdots \end{array}$ $\begin{array}{c} \vdots \end{array}$ $\begin{array}{c} \vdots \end{array} \\ \vdots \end{array}$

ii) Distant colors: $\swarrow \Rightarrow | |$

iv) Different colors:

vi) Braid relations:

- ▶ Theorem [D. '19]: This linear (3,2)-polygraph is convergent.
 - Termination: use derivations in two steps, values on generators are independent of the colors.
 - Confluence: exhaustive study of all critical branchings.

► Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \to \bullet \to \bullet \to \bullet)$

i) Same color:

ii) Distant colors: $\bigotimes \Rightarrow | |$

iv) Different colors:

vi) Braid relations:

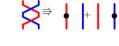
- ▶ Theorem [D. '19]: This linear (3,2)-polygraph is convergent.
 - Termination: use derivations in two steps, values on generators are independent of the colors.
 - Confluence: exhaustive study of all critical branchings.

► Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \to \bullet \to \bullet \to \bullet \to \bullet)$

i) Same color:

ii) Distant colors:

. X⇒||



iv) Different colors:

vi) Braid relations:

- ▶ Theorem [D. '19]: This linear (3,2)-polygraph is convergent.
 - Termination: use derivations in two steps, values on generators are independent of the colors.
 - Confluence: exhaustive study of all critical branchings.

► Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \to \bullet \to \bullet \to \bullet \to \bullet)$

i) Same color:

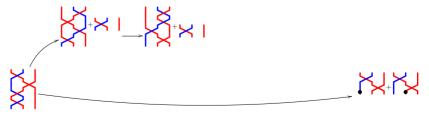
ii) Distant colors: $\bigotimes \Rightarrow | |$

X⇒ | |+ | |

iv) Different colors:

vi) Braid relations:

- ▶ Theorem [D. '19]: This linear (3,2)-polygraph is convergent.
 - Termination: use derivations in two steps, values on generators are independent of the colors.
 - Confluence: exhaustive study of all critical branchings.



► Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \to \bullet \to \bullet \to \bullet \to \bullet)$

i) Same color:

ii) Distant colors:

X⇒ ↓ |+ | ↓

iv) Different colors:

vi) Braid relations:

 \Join

- ▶ Theorem [D. '19]: This linear (3,2)-polygraph is convergent.
 - Termination: use derivations in two steps, values on generators are independent of the colors.
 - Confluence: exhaustive study of all critical branchings.

 $\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$

► Relations to realize the algebras $R(\mathcal{V})$ as 2Hom-spaces of a linear 2-category: $(\Gamma = \bullet \to \bullet \to \bullet \to \bullet \to \bullet)$

i) Same color:

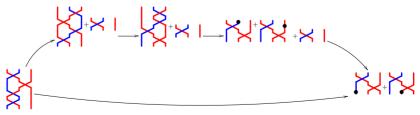
ii) Distant colors:

iii) Close colors:

iv) Different colors:

vi) Braid relations:

- ▶ Theorem [D. '19]: This linear (3,2)-polygraph is convergent.
 - Termination: use derivations in two steps, values on generators are independent of the colors.
 - Confluence: exhaustive study of all critical branchings.



III. Categorification of the quantum group $U_q(\mathfrak{sl}_2)$

Following Aaron Lauda: An introduction to diagrammatic algebra and categorified quantum sl2

► A Lie algebra over a field \mathbb{K} is a \mathbb{K} -vector space \mathfrak{g} equipped with a Lie bracket $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisying:

- ► bilinearity: $[\lambda x + \mu x', y] = \lambda[x, y] + \mu[x', y], \quad [x, \delta y + \gamma y'] = \delta[x, y] + \gamma[x, y'].$
- antisymmetry: [x, y] = -[y, x].
- Jacobi identity: [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

A Lie algebra over a field K is a K-vector space g equipped with a Lie bracket $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisying:

- ► bilinearity: $[\lambda x + \mu x', y] = \lambda[x, y] + \mu[x', y], [x, \delta y + \gamma y'] = \delta[x, y] + \gamma[x, y'].$
- antisymmetry: [x, y] = -[y, x].
- ► Jacobi identity: [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

A representation of a Lie algebra \mathfrak{g} is a \mathbb{K} -vector space V with a Lie algebra morphism $\rho : \mathfrak{g} \to \mathfrak{gl}(V) := \operatorname{End}(V)$, that is

 $\rho([x, y]) = \rho(x) \circ \rho(y) - \rho(y) \circ \rho(x)$

Notation: $x \cdot v := \rho(x)(v)$.

► A Lie algebra over a field K is a K-vector space g equipped with a Lie bracket $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisying:

- ► bilinearity: $[\lambda x + \mu x', y] = \lambda[x, y] + \mu[x', y], \quad [x, \delta y + \gamma y'] = \delta[x, y] + \gamma[x, y'].$
- antisymmetry: [x, y] = -[y, x].
- ► Jacobi identity: [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.
- A representation of a Lie algebra \mathfrak{g} is a \mathbb{K} -vector space V with a Lie algebra morphism $\rho : \mathfrak{g} \to \mathfrak{gl}(V) := \operatorname{End}(V)$, that is

$$\rho([x, y]) = \rho(x) \circ \rho(y) - \rho(y) \circ \rho(x)$$

Notation: $x \cdot v := \rho(x)(v)$.

► Example: The lie algebra \mathfrak{sl}_2 of 2 × 2 traceless matrices: $\mathfrak{sl}_2 = \mathbb{K}e \oplus \mathbb{K}h \oplus \mathbb{K}f$ where

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$

and satisfying [h, e] = 2e, [h, f] = -2f, [e, f] = h.

▶ A Lie algebra over a field K is a K-vector space g equipped with a Lie bracket $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisying:

- ► bilinearity: $[\lambda x + \mu x', y] = \lambda[x, y] + \mu[x', y], [x, \delta y + \gamma y'] = \delta[x, y] + \gamma[x, y'].$
- antisymmetry: [x, y] = -[y, x].
- ► Jacobi identity: [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.
- A representation of a Lie algebra \mathfrak{g} is a \mathbb{K} -vector space V with a Lie algebra morphism $\rho : \mathfrak{g} \to \mathfrak{gl}(V) := \operatorname{End}(V)$, that is

$$\rho([x, y]) = \rho(x) \circ \rho(y) - \rho(y) \circ \rho(x)$$

Notation: $x \cdot v := \rho(x)(v)$.

► Example: The lie algebra \mathfrak{sl}_2 of 2 × 2 traceless matrices: $\mathfrak{sl}_2 = \mathbb{K}e \oplus \mathbb{K}h \oplus \mathbb{K}f$ where $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$

and satisfying [h, e] = 2e, [h, f] = -2f, [e, f] = h.

• Let V be a finite dimensional representation of \mathfrak{sl}_2 . It can be decomposed as $V = \bigoplus V_{\alpha}$, where

$$V_{\alpha} = \{ \mathbf{v} \in \mathbb{K}; \mathbf{h} \cdot \mathbf{v} = \alpha \mathbf{v} \}.$$

Action of e and f on V_{α} :

 $h(e(v)) = e(h(v)) + [h, e](v) = e(\alpha v) + 2e(v) = (\alpha + 2)e(v)$, and similarly, $h(f(w)) = (\alpha - 2)f(w)$.

- Therefore, $e: E: V_{\alpha} \rightarrow V_{\alpha+2}$ and $f: V_{\alpha} \rightarrow V_{\alpha-2}$.
- An irreducible representation V admits a decomposition $V = \bigoplus_{n \in \mathbb{Z}} V_n$ where V_n is called the *n*-th weight space, and \mathbb{Z} is the weight lattice of \mathfrak{sl}_2 .

The quantum group $U_q(\mathfrak{sl}_2)$

► The quantum group $U_q(\mathfrak{sl}_2)$ associated with \mathfrak{sl}_2 is the $\mathbb{Q}(q)$ -algebra generated by elements E, F, K, K^{-1} subject to relations

$$KE = q^2 EK, \qquad KF = q^{-2} FK,$$

$$KK^{-1} = K^{-1}K = 1, \qquad EF - FE = \frac{K - K^{-1}}{q - q^{-1}}.$$

The quantum group $U_q(\mathfrak{sl}_2)$

▶ The quantum group $U_q(\mathfrak{sl}_2)$ associated with \mathfrak{sl}_2 is the $\mathbb{Q}(q)$ -algebra generated by elements E, F, K, K^{-1} subject to relations

$$KE = q^2 EK, \qquad KF = q^{-2} FK,$$

$$KK^{-1} = K^{-1}K = 1, \qquad EF - FE = \frac{K - K^{-1}}{q - q^{-1}}.$$

► Similarly, a representation of $U_q(\mathfrak{sl}_2)$ can be decomposed as $V = \bigoplus_{n \in \mathbb{Z}} V_n$ where $V_n = \{v \in \mathbb{K} : h \cdot v = q^n v\}.$

• Given a weight vector $v \in V_n$ the weights of Ev and Fv are determined using the relations

$$K(Ev) = q^2 EKv = q^{n+2}(Ev), \qquad K(Fv) = q^{-2} FKv = q^{n-2}(Fv),$$

so that $E: V_n \to V_{n+2}$ and $F: V_n \to V_{n-2}$.

The quantum group $U_q(\mathfrak{sl}_2)$

► The quantum group $U_q(\mathfrak{sl}_2)$ associated with \mathfrak{sl}_2 is the $\mathbb{Q}(q)$ -algebra generated by elements E, F, K, K^{-1} subject to relations

$$KE = q^2 EK, \qquad KF = q^{-2} FK,$$

$$KK^{-1} = K^{-1}K = 1, \qquad EF - FE = \frac{K - K^{-1}}{q - q^{-1}}.$$

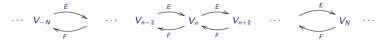
► Similarly, a representation of $U_q(\mathfrak{sl}_2)$ can be decomposed as $V = \bigoplus_{n \in \mathbb{Z}} V_n$ where $V_n = \{v \in \mathbb{K}; h \cdot v = q^n v\}.$

• Given a weight vector $v \in V_n$ the weights of Ev and Fv are determined using the relations

$$\mathcal{K}(\mathsf{Ev}) = q^2 \mathsf{E} \mathsf{Kv} = q^{n+2}(\mathsf{Ev}), \qquad \mathcal{K}(\mathsf{Fv}) = q^{-2} \mathsf{F} \mathsf{Kv} = q^{n-2}(\mathsf{Fv}),$$

so that $E: V_n \to V_{n+2}$ and $F: V_n \to V_{n-2}$.

▶ V can be thought of as a collection of vector spaces V_n for $n \in \mathbb{Z}$ such that:



and the main $U_q(\mathfrak{sl}_2)$ relation $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$ holds.

For $v \in V_n$, we thus have

$$(EF - FE)v = \frac{K - K^{-1}}{q - q^{-1}}v = \frac{Kv - K^{-1}v}{q - q^{-1}} = \frac{q^n - q^{-n}}{q - q^{-1}}v = [n]v.$$

where $[n] := \frac{q^n - q^{-n}}{q - q^{-1}} = q^{n-1} + q^{n-3} + \cdots + q^{1-n}$ is called the quantum number n.

30/41 ∢□▶∢舂▶∢≧▶∢≧▶ 볼 ∽੧<

We will consider a modified form U of $U_q(\mathfrak{sl}_2)$ that is better suited to study representations, and that can be interpreted as a 1-category, so that it is more natural for categorification purposes.

- ▶ We will consider a modified form U of $U_q(\mathfrak{sl}_2)$ that is better suited to study representations, and that can be interpreted as a 1-category, so that it is more natural for categorification purposes.
- First step: Consider the $\mathbb{Q}(q)$ -algebra obtained from $U_q(\mathfrak{sl}_2)$ by adding a collection of orthogonal idempotents 1_n for $n \in \mathbb{Z}$:

 $1_n 1_m = \delta_{n,m} 1_m, \quad K 1_n = 1_n K = q^n 1_n, \quad E 1_n = 1_{n+2} E, \quad F 1_n = 1_{n-2} F.$

• The main \mathfrak{sl}_2 relation is given by $EF1_n - FE1_n = [n]1_n$.

- ▶ We will consider a modified form U of $U_q(\mathfrak{sl}_2)$ that is better suited to study representations, and that can be interpreted as a 1-category, so that it is more natural for categorification purposes.
- First step: Consider the Q(q)-algebra obtained from U_q(sl₂) by adding a collection of orthogonal idempotents 1_n for n ∈ Z:

 $1_n 1_m = \delta_{n,m} 1_m, \quad K 1_n = 1_n K = q^n 1_n, \quad E 1_n = 1_{n+2} E, \quad F 1_n = 1_{n-2} F.$

- The main \mathfrak{sl}_2 relation is given by $EF1_n FE1_n = [n]1_n$.
- ▶ Second step: Consider an integral form of this algebra, that is a $\mathbb{Z}[q, q^{-1}]$ -algebra U generated by $K, K^{-1}, E^{(a)}, F^{(b)}$ for $a, b \in \mathbb{Z}_+$ where $E^{(a)}$ and $F^{(b)}$ are divided powers defined by

$$E^{(a)} = rac{E^a}{[a]!}, \quad F^{(b)} := rac{F^b}{[b]!} \quad ext{with } [a]! = [a][a-1]\dots[1].$$

▶ The idempotents $(1_n)_{n \in \mathbb{Z}}$ in U satisfy

$$K1_n = 1_n K = q^n 1_n, \quad E^{(a)}1_n = 1_{n+2a} E^{(a)}, \quad F^{(a)}1_n = 1_{n-2a} F^{(a)}.$$

- ▶ We will consider a modified form U of $U_q(\mathfrak{sl}_2)$ that is better suited to study representations, and that can be interpreted as a 1-category, so that it is more natural for categorification purposes.
- First step: Consider the Q(q)-algebra obtained from U_q(sl₂) by adding a collection of orthogonal idempotents 1_n for n ∈ Z:

 $1_n 1_m = \delta_{n,m} 1_m, \quad K 1_n = 1_n K = q^n 1_n, \quad E 1_n = 1_{n+2} E, \quad F 1_n = 1_{n-2} F.$

- The main \mathfrak{sl}_2 relation is given by $EF1_n FE1_n = [n]1_n$.
- ▶ Second step: Consider an integral form of this algebra, that is a $\mathbb{Z}[q, q^{-1}]$ -algebra U generated by $K, K^{-1}, E^{(a)}, F^{(b)}$ for $a, b \in \mathbb{Z}_+$ where $E^{(a)}$ and $F^{(b)}$ are divided powers defined by

$$E^{(a)} = rac{E^a}{[a]!}, \quad F^{(b)} := rac{F^b}{[b]!} \quad ext{with } [a]! = [a][a-1]\dots[1].$$

▶ The idempotents $(1_n)_{n \in \mathbb{Z}}$ in U satisfy

$$K 1_n = 1_n K = q^n 1_n, \quad E^{(a)} 1_n = 1_{n+2a} E^{(a)}, \quad F^{(a)} 1_n = 1_{n-2a} F^{(a)}$$

▶ We have a direct sum decomposition $U = \bigoplus_{n,m\in\mathbb{Z}} 1_m U 1_n$ where $1_m U 1_n$ is the $\mathbb{Z}[q,q^{-1}]$ -algebra generated by products $1_m E^{(a)} F^{(b)} 1_n$ and $1_m F^{(b)} E^{(a)} 1_n$ for all $a, b \in \mathbb{Z}_+$ such that n + 2a - 2b = m.

- ▶ We will consider a modified form U of $U_q(\mathfrak{sl}_2)$ that is better suited to study representations, and that can be interpreted as a 1-category, so that it is more natural for categorification purposes.
- First step: Consider the Q(q)-algebra obtained from U_q(sl₂) by adding a collection of orthogonal idempotents 1_n for n ∈ Z:

 $1_n 1_m = \delta_{n,m} 1_m, \quad K 1_n = 1_n K = q^n 1_n, \quad E 1_n = 1_{n+2} E, \quad F 1_n = 1_{n-2} F.$

- The main \mathfrak{sl}_2 relation is given by $EF1_n FE1_n = [n]1_n$.
- ▶ Second step: Consider an integral form of this algebra, that is a $\mathbb{Z}[q, q^{-1}]$ -algebra U generated by $K, K^{-1}, E^{(a)}, F^{(b)}$ for $a, b \in \mathbb{Z}_+$ where $E^{(a)}$ and $F^{(b)}$ are divided powers defined by

$$E^{(a)} = rac{E^a}{[a]!}, \quad F^{(b)} := rac{F^b}{[b]!} \quad ext{with } [a]! = [a][a-1]\dots[1].$$

▶ The idempotents $(1_n)_{n \in \mathbb{Z}}$ in U satisfy

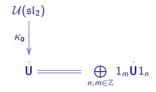
$$K1_n = 1_n K = q^n 1_n, \quad E^{(a)}1_n = 1_{n+2a} E^{(a)}, \quad F^{(a)}1_n = 1_{n-2a} F^{(a)}$$

- ▶ We have a direct sum decomposition $\mathbf{U} = \bigoplus_{n,m\in\mathbb{Z}} \mathbf{1}_m \mathbf{U} \mathbf{1}_n$ where $\mathbf{1}_m \mathbf{U} \mathbf{1}_n$ is the $\mathbb{Z}[q,q^{-1}]$ -algebra generated by products $\mathbf{1}_m E^{(a)} F^{(b)} \mathbf{1}_n$ and $\mathbf{1}_m F^{(b)} E^{(a)} \mathbf{1}_n$ for all $a, b \in \mathbb{Z}_+$ such that n + 2a - 2b = m.
- U can be interpreted as a 1-category whose:
 - objects are the $n \in \mathbb{Z}$,
 - morphisms with source *n* and target *m* are the elements of $1_m U 1_n$,
 - identities are the 1_n and composition $1_{m'} U 1_m \circ 1_{n'} U 1_n \to 1_{m'} \circ U 1_n$ is defined if n' = m and corresponds to the product.

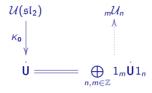
► U being a 1-category, we expect its categorification U(sl₂) to be an additive 2-category, that is a category enriched over the category of additive categories:

```
 \begin{array}{c|c} \mathcal{U}(\mathfrak{sl}_2) \\ \kappa_0 \\ \downarrow \\ \dot{\mathbf{U}} \end{array}
```

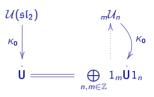
► U being a 1-category, we expect its categorification U(sl₂) to be an additive 2-category, that is a category enriched over the category of additive categories:



► U being a 1-category, we expect its categorification U(sl₂) to be an additive 2-category, that is a category enriched over the category of additive categories:

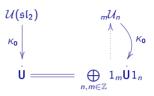


► U being a 1-category, we expect its categorification U(sl₂) to be an additive 2-category, that is a category enriched over the category of additive categories:



where $\mathcal{K}_0(\mathcal{U}(\mathfrak{sl}_2)) := \bigoplus_{n,m \in \mathbb{Z}} \mathcal{K}_0(_m\mathcal{U}_n)$ with $[x] = [x_1][x_2]$ if $x = x_1 \star_0 x_2$ in $\mathcal{U}(\mathfrak{sl}_2)$

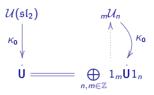
► U being a 1-category, we expect its categorification U(sl₂) to be an additive 2-category, that is a category enriched over the category of additive categories:



where $\mathcal{K}_0(\mathcal{U}(\mathfrak{sl}_2)) := \bigoplus_{n,m \in \mathbb{Z}} \mathcal{K}_0(_m\mathcal{U}_n)$ with $[x] = [x_1][x_2]$ if $x = x_1 \star_0 x_2$ in $\mathcal{U}(\mathfrak{sl}_2)$

▶ $1_m U 1_n$ is a $\mathbb{Z}[q, q^{-1}]$ -module, and we lift the action of q as a grading automorphism $\{\cdot\} : \mathcal{U} \to \mathcal{U} :$ $[x\{t\}] = q^t[x] \longrightarrow \text{hom-sets } {}_m \mathcal{U}_n \text{ for } m, n \in \mathbb{Z} \text{ are graded}$

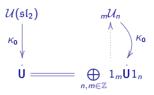
► U being a 1-category, we expect its categorification U(sl₂) to be an additive 2-category, that is a category enriched over the category of additive categories:



where $\mathcal{K}_0(\mathcal{U}(\mathfrak{sl}_2)) := \bigoplus_{n,m \in \mathbb{Z}} \mathcal{K}_0(_m\mathcal{U}_n)$ with $[x] = [x_1][x_2]$ if $x = x_1 \star_0 x_2$ in $\mathcal{U}(\mathfrak{sl}_2)$

- ▶ $1_m U 1_n$ is a $\mathbb{Z}[q, q^{-1}]$ -module, and we lift the action of q as a grading automorphism $\{\cdot\} : \mathcal{U} \to \mathcal{U} :$ $[x\{t\}] = q^t[x] \quad \longrightarrow \text{ hom-sets } {}_m \mathcal{U}_n \text{ for } m, n \in \mathbb{Z} \text{ are graded}$
- ▶ Fact: U admits a basis \mathbb{B} with good properties, called Lusztig's canonical basis made of elements $E^{(a)}1_{-n}F^{(b)}$ and $F^{(b)}1_{n}E^{(a)}$ with $a, b, n \in \mathbb{N}$ and $n \ge a + b$.
 - The structure coefficients are this basis are in $\mathbb{N}[q, q^{-1}]$.
 - This suggests that the indecomposable 1-morphisms in U(sl₂) should correspond (up to grading shift) to the elements of B:

► U being a 1-category, we expect its categorification U(sl₂) to be an additive 2-category, that is a category enriched over the category of additive categories:



where $\mathcal{K}_0(\mathcal{U}(\mathfrak{sl}_2)) := \bigoplus_{n,m\in\mathbb{Z}} \mathcal{K}_0(_m\mathcal{U}_n)$ with $[x] = [x_1][x_2]$ if $x = x_1 \star_0 x_2$ in $\mathcal{U}(\mathfrak{sl}_2)$

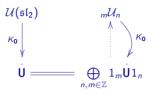
- ▶ $1_m U 1_n$ is a $\mathbb{Z}[q, q^{-1}]$ -module, and we lift the action of q as a grading automorphism $\{\cdot\} : \mathcal{U} \to \mathcal{U} :$ $[x\{t\}] = q^t[x] \quad \longrightarrow \text{ hom-sets } {}_m \mathcal{U}_n \text{ for } m, n \in \mathbb{Z} \text{ are graded}$
- ▶ Fact: U admits a basis \mathbb{B} with good properties, called Lusztig's canonical basis made of elements $E^{(a)}1_{-n}F^{(b)}$ and $F^{(b)}1_{n}E^{(a)}$ with $a, b, n \in \mathbb{N}$ and $n \ge a + b$.
 - The structure coefficients are this basis are in $\mathbb{N}[q, q^{-1}]$.
 - This suggests that the indecomposable 1-morphisms in U(sl₂) should correspond (up to grading shift) to the elements of B:

▶ We lift the elements 1_n , $E1_n$ and $F1_n$ of U as generating 1-cells 1_n , $\mathcal{E}1_n$ and $\mathcal{F}1_n$ with

 $\mathbf{1}_n: n \to n, \quad \mathbf{1}_{n+2} \mathcal{E} \mathbf{1}_n: n \to n+2, \quad \mathbf{1}_{n-2} \mathcal{F} \mathbf{1}_n: n \to n-2.$

We simply denote $1_{n+2}\mathcal{E}1_n$ by $\mathcal{E}1_n$, and $1_n\mathcal{E}1_{n-2} \circ 1_{n-2}\mathcal{F}1_n$ is denoted by $\mathcal{E}\mathcal{F}1_n$.

U being a 1-category, we expect its categorification U(sl₂) to be an additive 2-category, that is a category enriched over the category of additive categories:



where $\mathcal{K}_0(\mathcal{U}(\mathfrak{sl}_2)) := \bigoplus_{n,m \in \mathbb{Z}} \mathcal{K}_0(_m\mathcal{U}_n)$ with $[x] = [x_1][x_2]$ if $x = x_1 \star_0 x_2$ in $\mathcal{U}(\mathfrak{sl}_2)$

- ▶ $1_m U 1_n$ is a $\mathbb{Z}[q, q^{-1}]$ -module, and we lift the action of q as a grading automorphism $\{\cdot\} : \mathcal{U} \to \mathcal{U} :$ $[x\{t\}] = q^t[x] \quad \longrightarrow \text{ hom-sets } {}_m \mathcal{U}_n \text{ for } m, n \in \mathbb{Z} \text{ are graded}$
- ▶ Fact: U admits a basis \mathbb{B} with good properties, called Lusztig's canonical basis made of elements $E^{(a)}1_{-n}F^{(b)}$ and $F^{(b)}1_{n}E^{(a)}$ with $a, b, n \in \mathbb{N}$ and $n \ge a + b$.
 - The structure coefficients are this basis are in $\mathbb{N}[q, q^{-1}]$.
 - This suggests that the indecomposable 1-morphisms in U(sl₂) should correspond (up to grading shift) to the elements of B:

▶ We lift the elements 1_n , $E1_n$ and $F1_n$ of U as generating 1-cells 1_n , $E1_n$ and $F1_n$ with

$$\mathbf{1}_n: n \to n, \quad \mathbf{1}_{n+2} \mathcal{E} \mathbf{1}_n: n \to n+2, \quad \mathbf{1}_{n-2} \mathcal{F} \mathbf{1}_n: n \to n-2.$$

We simply denote $1_{n+2}\mathcal{E}1_n$ by $\mathcal{E}1_n$, and $1_n\mathcal{E}1_{n-2} \circ 1_{n-2}\mathcal{F}1_n$ is denoted by $\mathcal{E}\mathcal{F}1_n$.

► Therefore, the 1-cells of $\mathcal{U}(\mathfrak{sl}_2)$ with source *n* and target *m* are formal direct sums of elements of the form $\lim_{m \in \mathcal{L}^{\alpha_1} \mathcal{F}^{\beta_1} \mathcal{E}^{\alpha_2} \dots \mathcal{F}^{\beta_{k-1}} \mathcal{E}^{\alpha_k} \mathcal{F}^{\beta_k} \mathbf{1}_n \{s\}$

where $m = n + 2(\sum \alpha_i - \sum \beta_i)$, and $s \in \mathbb{Z}$.

32/41 ▲□▶ ▲圊▶ ▲콜▶ ▲콜▶ 볼 ∽��♡

▶ 0-cells of U(sl₂) are elements of the weight lattice Z of sl₂, and 1-cells of U(sl₂) are formal direct sums of elements of the form

 $\mathbf{1}_{n'}\mathcal{E}_{\varepsilon}\mathbf{1}_n\{t\}$

where $\underline{\varepsilon} = (\varepsilon_1, \ldots, \varepsilon_k)$, each $\varepsilon_i \in \{+, -\}$, $\mathcal{E}_+ := \mathcal{E}$, $\mathcal{E}_- := \mathcal{F}$ and $n' - n = 2 \sum_{i=1}^k \varepsilon_i 1$.

O-cells of U(sl₂) are elements of the weight lattice Z of sl₂, and 1-cells of U(sl₂) are formal direct sums of elements of the form

 $\mathbf{1}_{n'}\mathcal{E}_{\varepsilon}\mathbf{1}_n\{t\}$

where $\underline{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_k)$, each $\varepsilon_i \in \{+, -\}$, $\mathcal{E}_+ := \mathcal{E}$, $\mathcal{E}_- := \mathcal{F}$ and $n' - n = 2\sum_{i=1}^k \varepsilon_i 1$.

► The space of 2-cells U(x, y) between 1-cells x and y is a graded vector space of degree homogeneous 2-cells:

$$\mathcal{U}(x,y) = \bigoplus_{t\in\mathbb{Z}} \mathcal{U}(x\{t\},y).$$

O-cells of U(sl₂) are elements of the weight lattice Z of sl₂, and 1-cells of U(sl₂) are formal direct sums of elements of the form

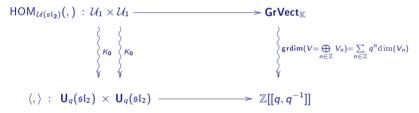
 $\mathbf{1}_{n'}\mathcal{E}_{\varepsilon}\mathbf{1}_n\{t\}$

where $\underline{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_k)$, each $\varepsilon_i \in \{+, -\}$, $\mathcal{E}_+ := \mathcal{E}$, $\mathcal{E}_- := \mathcal{F}$ and $n' - n = 2\sum_{i=1}^k \varepsilon_i 1$.

► The space of 2-cells U(x, y) between 1-cells x and y is a graded vector space of degree homogeneous 2-cells:

$$\mathcal{U}(x,y) = \bigoplus_{t\in\mathbb{Z}} \mathcal{U}(x\{t\},y).$$

We have a map



O-cells of U(sl₂) are elements of the weight lattice Z of sl₂, and 1-cells of U(sl₂) are formal direct sums of elements of the form

 $\mathbf{1}_{n'}\mathcal{E}_{\varepsilon}\mathbf{1}_n\{t\}$

where $\underline{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_k)$, each $\varepsilon_i \in \{+, -\}$, $\mathcal{E}_+ := \mathcal{E}$, $\mathcal{E}_- := \mathcal{F}$ and $n' - n = 2 \sum_{i=1}^k \varepsilon_i 1$.

► The space of 2-cells U(x, y) between 1-cells x and y is a graded vector space of degree homogeneous 2-cells:

$$\mathcal{U}(x,y) = \bigoplus_{t\in\mathbb{Z}} \mathcal{U}(x\{t\},y).$$

We have a map

• We thus get a pairing $\langle [x], [y] \rangle$ for $x, y \in \mathcal{U}(\mathfrak{sl}_2)_1$ such that

 $\langle q^t[x], y \rangle = q^{-t} \langle [x], [y] \rangle, \quad \langle x, q^t[y] \rangle = q^t \langle [x], [y] \rangle.$

O-cells of U(sl₂) are elements of the weight lattice Z of sl₂, and 1-cells of U(sl₂) are formal direct sums of elements of the form

 $\mathbf{1}_{n'}\mathcal{E}_{\varepsilon}\mathbf{1}_n\{t\}$

where $\underline{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_k)$, each $\varepsilon_i \in \{+, -\}$, $\mathcal{E}_+ := \mathcal{E}$, $\mathcal{E}_- := \mathcal{F}$ and $n' - n = 2 \sum_{i=1}^k \varepsilon_i 1$.

► The space of 2-cells U(x, y) between 1-cells x and y is a graded vector space of degree homogeneous 2-cells:

$$\mathcal{U}(x,y) = \bigoplus_{t\in\mathbb{Z}} \mathcal{U}(x\{t\},y).$$

We have a map

• We thus get a pairing $\langle [x], [y] \rangle$ for $x, y \in \mathcal{U}(\mathfrak{sl}_2)_1$ such that

 $\langle q^t[x], y \rangle = q^{-t} \langle [x], [y] \rangle, \quad \langle x, q^t[y] \rangle = q^t \langle [x], [y] \rangle.$

- The graded HOMs $\mathcal{U}(\mathfrak{sl}_2)(x, y)$ categorify a semi-linear form on U.
- Candidate : Lusztig defined such a pairing on U as the dimension of an Ext algebra between sheaves over a quiver variety. It satisfies

 $\langle\cdot,\cdot\rangle \text{ is semi-linear, and } \langle \mathbf{1}_{n_1} \times \mathbf{1}_{n_2}, \mathbf{1}_{n_1'} \mathbf{y} \mathbf{1}_{n_2'} \rangle = 0 \text{ for every } \mathbf{x}, \mathbf{y}, \text{ unless } n_1 = n_1', \ n_2 = n_2'.$

Moreover, one can compute values of this pairing on products of divided powers.

33/41 ▲□▶ ◀♬▶ ◀≧▶ ◀≧▶ 볼 ∽੧ੑੑੑੑੵ

▶ We define identity 2-cells on the 1-cells $\mathcal{E}\mathbf{1}_n\{t\}$ and $\mathcal{F}\mathbf{1}_n\{t\}$ for every $t \in \mathbb{Z}$ as follows:

$$1_{\mathcal{E}1_n\{t\}} \qquad 1_{\mathcal{F}1_n\{t\}}$$

$$n+2 \qquad n \qquad n-2 \qquad n$$

▶ We define identity 2-cells on the 1-cells $\mathcal{E}\mathbf{1}_n\{t\}$ and $\mathcal{F}\mathbf{1}_n\{t\}$ for every $t \in \mathbb{Z}$ as follows:

$1_{\mathcal{E}1_n\{t\}}$		$1_{\mathcal{F}1_n\{t\}}$		
n+2	n	n — 2	v n	

► To construct 2-cells, we use

```
\mathsf{grdim}(\mathcal{U}(\mathfrak{sl}_2)(\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon}}\mathbf{1}_n,\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon'}}\mathbf{1}_n)) = \langle \mathbf{1}_m\mathcal{E}_{\underline{\varepsilon}}\mathbf{1}_n,\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon'}}\mathbf{1}_n\rangle
```

• each term aq^t on the right states that the space of 2-cells between $1_m \mathcal{E}_{\underline{\varepsilon}} 1_n$ and $1_m \mathcal{E}_{\underline{\varepsilon'}} 1_n$ with degree t is of dimension a.

▶ We define identity 2-cells on the 1-cells $\mathcal{E}\mathbf{1}_n\{t\}$ and $\mathcal{F}\mathbf{1}_n\{t\}$ for every $t \in \mathbb{Z}$ as follows:

$1_{\mathcal{E}1_n\{t\}}$		$1_{\mathcal{F}1_n\{t\}}$			}
n + 2	п	n	- 2	ł	n

► To construct 2-cells, we use

```
\mathsf{grdim}(\mathcal{U}(\mathfrak{sl}_2)(\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon}}\mathbf{1}_n,\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon'}}\mathbf{1}_n)) = \langle \mathbf{1}_m\mathcal{E}_{\underline{\varepsilon}}\mathbf{1}_n,\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon'}}\mathbf{1}_n\rangle
```

- each term aq^t on the right states that the space of 2-cells between $1_m \mathcal{E}_{\underline{\varepsilon}} 1_n$ and $1_m \mathcal{E}_{\underline{\varepsilon'}} 1_n$ with degree t is of dimension a.
- Example 1: $\langle E1_n, E1_n \rangle = 1 + q^2 + q^4 + \dots$

▶ We define identity 2-cells on the 1-cells $\mathcal{E}\mathbf{1}_n\{t\}$ and $\mathcal{F}\mathbf{1}_n\{t\}$ for every $t \in \mathbb{Z}$ as follows:

$1_{\mathcal{E}1_n\{t\}}$		$1_{\mathcal{F}1_n\{t\}}$			}
n + 2	п	n	- 2	ł	n

► To construct 2-cells, we use

```
\mathsf{grdim}(\mathcal{U}(\mathfrak{sl}_2)(\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon}}\mathbf{1}_n,\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon'}}\mathbf{1}_n)) = \langle \mathbf{1}_m\mathcal{E}_{\underline{\varepsilon}}\mathbf{1}_n,\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon'}}\mathbf{1}_n\rangle
```

- each term aq^t on the right states that the space of 2-cells between $1_m \mathcal{E}_{\underline{\varepsilon}} 1_n$ and $1_m \mathcal{E}_{\underline{\varepsilon'}} 1_n$ with degree t is of dimension a.
- **Example 1**: $\langle E1_n, E1_n \rangle = 1 + q^2 + q^4 + ...$
 - $U(\mathcal{E}\mathbf{1}_n\{t\}, \mathcal{E}\mathbf{1}_n) = \{0\}$ for t < 0,

▶ We define identity 2-cells on the 1-cells $\mathcal{E}\mathbf{1}_n\{t\}$ and $\mathcal{F}\mathbf{1}_n\{t\}$ for every $t \in \mathbb{Z}$ as follows:

$1_{\mathcal{E}1_n\{t\}}$		$1_{\mathcal{F}1_n\{t\}}$			}
n + 2	n	п	- 2	Y	n

► To construct 2-cells, we use

```
\mathsf{grdim}(\mathcal{U}(\mathfrak{sl}_2)(\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon}}\mathbf{1}_n,\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon'}}\mathbf{1}_n)) = \langle \mathbf{1}_m\mathcal{E}_{\underline{\varepsilon}}\mathbf{1}_n,\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon'}}\mathbf{1}_n\rangle
```

- each term aq^t on the right states that the space of 2-cells between $1_m \mathcal{E}_{\underline{\varepsilon}} 1_n$ and $1_m \mathcal{E}_{\underline{\varepsilon'}} 1_n$ with degree t is of dimension a.
- **Example 1**: $\langle E1_n, E1_n \rangle = 1 + q^2 + q^4 + \dots$
 - ▶ $\mathcal{U}(\mathcal{E}\mathbf{1}_n\{t\}, \mathcal{E}\mathbf{1}_n) = \{0\}$ for $t < 0, \mathcal{U}(\mathcal{E}\mathbf{1}_n, \mathcal{E}\mathbf{1}_n)$ is of dimension 1, generated by $1_{\mathcal{E}\mathbf{1}_n}$.

▶ We define identity 2-cells on the 1-cells $\mathcal{E}\mathbf{1}_n\{t\}$ and $\mathcal{F}\mathbf{1}_n\{t\}$ for every $t \in \mathbb{Z}$ as follows:

$1_{\mathcal{E}1_n\{t\}}$		$1_{\mathcal{F}1_n\{t\}}$		
n + 2	n	n — 2	, n	

To construct 2-cells, we use

```
\operatorname{\mathsf{grdim}}(\mathcal{U}(\mathfrak{sl}_2)(\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon}}\mathbf{1}_n,\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon'}}\mathbf{1}_n)) = \langle \mathbf{1}_m\mathcal{E}_{\underline{\varepsilon}}\mathbf{1}_n,\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon'}}\mathbf{1}_n\rangle
```

- each term aq^t on the right states that the space of 2-cells between $1_m \mathcal{E}_{\underline{\varepsilon}} 1_n$ and $1_m \mathcal{E}_{\underline{\varepsilon}'} 1_n$ with degree t is of dimension a.
- Example 1: $\langle E1_n, E1_n \rangle = 1 + q^2 + q^4 + \dots$
 - ▶ $\mathcal{U}(\mathcal{E}\mathbf{1}_n\{t\}, \mathcal{E}\mathbf{1}_n) = \{0\}$ for t < 0, $\mathcal{U}(\mathcal{E}\mathbf{1}_n, \mathcal{E}\mathbf{1}_n)$ is of dimension 1, generated by $1_{\mathcal{E}\mathbf{1}_n}$.
 - The term q^2 suggests that there is a 2-cell $\mathcal{E}\mathbf{1}_n \Rightarrow \mathcal{E}\mathbf{1}_n$ with degree 2:

$$deg \left(\begin{array}{ccc} n+2 & n \\ \bullet & \bullet \end{array} \right) = 2.$$

▶ We define identity 2-cells on the 1-cells $\mathcal{E}\mathbf{1}_n\{t\}$ and $\mathcal{F}\mathbf{1}_n\{t\}$ for every $t \in \mathbb{Z}$ as follows:

$1_{\mathcal{E}1_n\{t\}}$		$1_{\mathcal{F}1_n\{t\}}$			}
n + 2	п	n	- 2	ł	n

To construct 2-cells, we use

```
\mathsf{grdim}(\mathcal{U}(\mathfrak{sl}_2)(\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon}}\mathbf{1}_n,\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon'}}\mathbf{1}_n)) = \langle \mathbf{1}_m\mathcal{E}_{\underline{\varepsilon}}\mathbf{1}_n,\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon'}}\mathbf{1}_n\rangle
```

- each term aq^t on the right states that the space of 2-cells between $1_m \mathcal{E}_{\underline{\varepsilon}} 1_n$ and $1_m \mathcal{E}_{\underline{\varepsilon}'} 1_n$ with degree t is of dimension a.
- Example 1: $\langle E1_n, E1_n \rangle = 1 + q^2 + q^4 + \dots$
 - ▶ $\mathcal{U}(\mathcal{E}\mathbf{1}_n\{t\}, \mathcal{E}\mathbf{1}_n) = \{0\}$ for t < 0, $\mathcal{U}(\mathcal{E}\mathbf{1}_n, \mathcal{E}\mathbf{1}_n)$ is of dimension 1, generated by $1_{\mathcal{E}\mathbf{1}_n}$.
 - The term q^2 suggests that there is a 2-cell $\mathcal{E}\mathbf{1}_n \Rightarrow \mathcal{E}\mathbf{1}_n$ with degree 2:

$$deg \left(\begin{array}{ccc} n+2 & n \\ & \bullet \end{array} \right) = 2, \qquad \text{similarly,} \quad deg \left(\begin{array}{ccc} n-2 & \bullet & n \\ & \bullet & \bullet \end{array} \right) = 2$$

▶ We define identity 2-cells on the 1-cells $\mathcal{E}\mathbf{1}_n\{t\}$ and $\mathcal{F}\mathbf{1}_n\{t\}$ for every $t \in \mathbb{Z}$ as follows:

$1_{\mathcal{E}1_n\{t\}}$		$1_{\mathcal{F}1_n\{t\}}$			}
n + 2	п	n	- 2	ł	n

To construct 2-cells, we use

```
\mathsf{grdim}(\mathcal{U}(\mathfrak{sl}_2)(\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon}}\mathbf{1}_n,\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon'}}\mathbf{1}_n)) = \langle \mathbf{1}_m\mathcal{E}_{\underline{\varepsilon}}\mathbf{1}_n,\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon'}}\mathbf{1}_n\rangle
```

- each term aq^t on the right states that the space of 2-cells between $1_m \mathcal{E}_{\underline{\varepsilon}} 1_n$ and $1_m \mathcal{E}_{\underline{\varepsilon'}} 1_n$ with degree t is of dimension a.
- Example 1: $\langle E1_n, E1_n \rangle = 1 + q^2 + q^4 + \dots$
 - $\mathcal{U}(\mathcal{E}\mathbf{1}_n\{t\}, \mathcal{E}\mathbf{1}_n) = \{0\}$ for $t < 0, \mathcal{U}(\mathcal{E}\mathbf{1}_n, \mathcal{E}\mathbf{1}_n)$ is of dimension 1, generated by $\mathbf{1}_{\mathcal{E}\mathbf{1}_n}$.
 - The term q^2 suggests that there is a 2-cell $\mathcal{E}\mathbf{1}_n \Rightarrow \mathcal{E}\mathbf{1}_n$ with degree 2:

$$deg \left(\begin{array}{ccc} n+2 & n \\ & \bullet \end{array} \right) = 2, \qquad \text{similarly,} \quad deg \left(\begin{array}{ccc} n-2 & n \\ & \bullet \end{array} \right) = 2.$$

• There is a q^4 , but no need to add a new generator in degree 4:

$$\deg\left(\begin{array}{ccc}n+2&\bullet&n\\&\bullet&\end{array}\right) = 4.$$

34/41 ▲□▶▲쿱▶▲콜▶▲콜▶ 콜 키익종

▶ We define identity 2-cells on the 1-cells $\mathcal{E}\mathbf{1}_n\{t\}$ and $\mathcal{F}\mathbf{1}_n\{t\}$ for every $t \in \mathbb{Z}$ as follows:

$1_{\mathcal{E}1_n\{t\}}$		$1_{\mathcal{F}1_n\{t\}}$		
n+2	п	n — 2	, n	

To construct 2-cells, we use

```
\operatorname{\mathsf{grdim}}(\mathcal{U}(\mathfrak{sl}_2)(\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon}}\mathbf{1}_n,\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon'}}\mathbf{1}_n)) = \langle \mathbf{1}_m\mathcal{E}_{\underline{\varepsilon}}\mathbf{1}_n,\mathbf{1}_m\mathcal{E}_{\underline{\varepsilon'}}\mathbf{1}_n\rangle
```

- each term aq^t on the right states that the space of 2-cells between $1_m \mathcal{E}_{\underline{\varepsilon}} 1_n$ and $1_m \mathcal{E}_{\underline{\varepsilon'}} 1_n$ with degree t is of dimension a.
- Example 1: $\langle E1_n, E1_n \rangle = 1 + q^2 + q^4 + \dots$
 - $\mathcal{U}(\mathcal{E}\mathbf{1}_n\{t\}, \mathcal{E}\mathbf{1}_n) = \{0\}$ for $t < 0, \mathcal{U}(\mathcal{E}\mathbf{1}_n, \mathcal{E}\mathbf{1}_n)$ is of dimension 1, generated by $\mathbf{1}_{\mathcal{E}\mathbf{1}_n}$.
 - The term q^2 suggests that there is a 2-cell $\mathcal{E}\mathbf{1}_n \Rightarrow \mathcal{E}\mathbf{1}_n$ with degree 2:

$$deg\left(\begin{array}{ccc} n+2 & n \\ & \bullet \end{array}\right) = 2, \qquad \text{similarly,} \quad deg\left(\begin{array}{ccc} n-2 & n \\ & \bullet \end{array}\right) = 2.$$

• There is a q^4 , but no need to add a new generator in degree 4:

$$\deg\left(\begin{array}{ccc}n+2&\bullet&n\\&\bullet&\end{array}\right) = 4.$$

For any $\alpha \in \mathbb{N}$, $\mathcal{U}(\mathfrak{sl}_2)(\mathcal{E}\mathbf{1}_n \{2\alpha\}, \mathcal{E}\mathbf{1}_n)$ is of dimension 1, generated by

34 / 41

• Example 2: $\langle EE1_n, EE1_n \rangle = (1 + q^{-2}) \left(\frac{1}{1 - q^{-2}} \right).$

$$\blacktriangleright \text{ If } h(\alpha_1, \alpha_2) = \overset{n+4}{\underset{\alpha_2}{\overset{\alpha_2}{\bullet}}} \overset{n}{\underset{\alpha_1}{\overset{\alpha_1}{\bullet}}} \text{, then } \sum_{\alpha_1, \alpha_2 \ge 0} q^{\deg(h(\alpha_1, \alpha_2))} = \left(\frac{1}{1 - q^{-2}}\right).$$

• Example 2: $\langle EE1_n, EE1_n \rangle = (1 + q^{-2}) \left(\frac{1}{1 - q^{-2}} \right).$

$$\blacktriangleright \text{ If } h(\alpha_1, \alpha_2) = \overset{n+4}{\underset{\alpha_2}{\overset{\alpha_2}{\bullet}}} \overset{n}{\underset{\alpha_1}{\overset{\alpha_2}{\bullet}}} , \text{ then } \sum_{\alpha_1, \alpha_2 \ge 0} q^{\deg(h(\alpha_1, \alpha_2))} = \left(\frac{1}{1-q^{-2}}\right).$$

▶ A 2-cell $\mathcal{EE1}_n \Rightarrow \mathcal{EE1}_n$ is missing, we picture it by

$$deg\left(\begin{array}{c|c}n+4& & n\\ & & n\\ & & & n\end{array}\right)=-2.$$

• Example 2: $\langle EE1_n, EE1_n \rangle = (1 + q^{-2}) \left(\frac{1}{1 - q^{-2}} \right).$

$$\blacktriangleright \text{ If } h(\alpha_1, \alpha_2) = \overset{n+4}{\underset{\alpha_2}{\longleftarrow}} \overset{n}{\underset{\alpha_1}{\longleftarrow}} , \text{ then } \sum_{\alpha_1, \alpha_2 \ge 0} q^{\deg(h(\alpha_1, \alpha_2))} = \left(\frac{1}{1-q^{-2}}\right).$$

• A 2-cell $\mathcal{EE1}_n \Rightarrow \mathcal{EE1}_n$ is missing, we picture it by

► Example 2: $\langle EE1_n, EE1_n \rangle = (1 + q^{-2}) \left(\frac{1}{1 - q^{-2}}\right).$

$$\blacktriangleright \text{ If } h(\alpha_1, \alpha_2) = \overset{n+4}{\underset{\alpha_2}{\longleftarrow}} \overset{n}{\underset{\alpha_1}{\longleftarrow}} , \text{ then } \sum_{\alpha_1, \alpha_2 \ge 0} q^{\deg(h(\alpha_1, \alpha_2))} = \left(\frac{1}{1-q^{-2}}\right).$$

▶ A 2-cell $\mathcal{EE1}_n \Rightarrow \mathcal{EE1}_n$ is missing, we picture it by

$$\deg\left(\begin{array}{ccc}n+4\\ \end{array}\right)=-2.$$

One can deduce further relations:

• Example 2: $\langle EE1_n, EE1_n \rangle = (1 + q^{-2}) \left(\frac{1}{1 - q^{-2}} \right).$

$$\blacktriangleright \text{ If } h(\alpha_1,\alpha_2) = \overset{n+4}{\underset{\alpha_2}{\longleftarrow}} \overset{n}{\underset{\alpha_1}{\longleftarrow}} , \text{ then } \sum_{\alpha_1,\alpha_2 \ge 0} q^{\deg(h(\alpha_1,\alpha_2))} = \left(\frac{1}{1-q^{-2}}\right).$$

• A 2-cell $\mathcal{EE1}_n \Rightarrow \mathcal{EE1}_n$ is missing, we picture it by

One can deduce further relations:

Since the coeff before q⁰ is 3, the diagrams

are not linearly independant. We add nil Hecke relations between these forms.

• Example 2: $\langle EE1_n, EE1_n \rangle = (1 + q^{-2}) \left(\frac{1}{1 - q^{-2}} \right).$

$$\blacktriangleright \text{ If } h(\alpha_1,\alpha_2) = \overset{n+4}{\underset{\alpha_2}{\longleftarrow}} \overset{n}{\underset{\alpha_1}{\longleftarrow}} , \text{ then } \underset{\alpha_1,\alpha_2 \ge 0}{\underset{\alpha_1,\alpha_2 \ge 0}{\sum}} q^{\deg(h(\alpha_1,\alpha_2))} = \left(\frac{1}{1-q^{-2}}\right).$$

• A 2-cell $\mathcal{EE1}_n \Rightarrow \mathcal{EE1}_n$ is missing, we picture it by

One can deduce further relations:

Since the coeff before q⁰ is 3, the diagrams

are not linearly independant. We add nil Hecke relations between these forms.

• Example 3: $\langle FE1_n, 1_n \rangle = \frac{q^{1+n}}{1-q^2}, \langle EF1_n, 1_n \rangle = \frac{q^{1-n}}{1-q^2}, \langle 1_n, EF1_n \rangle = \frac{q^{1+n}}{1-q^2}, \langle 1_n, FE1_n \rangle = \frac{q^{1-n}}{1-q^2}$

generator	n	n	n n	↓ n
degree	1+n	1-n	1+n	1-n

subject to pivotal isotopy relations.

• Example 4: $\langle EF1_n, FE1_n \rangle = (1+q^2) \left(\frac{1}{1-q^2}\right)^2$.

• Example 4:
$$\langle EF1_n, FE1_n \rangle = (1+q^2) \left(\frac{1}{1-q^2}\right)^2$$

▶ There is a q^0 , but we do not need to add a degree 0 2-cell $\mathcal{EF1}_n \Rightarrow \mathcal{FE1}_n$ since

$$deg\left(\begin{array}{c}n\\n\end{array}\right) = deg\left(\begin{array}{c}n\\n\end{array}\right) = 0$$

- Example 4: $\langle EF1_n, FE1_n \rangle = (1+q^2) \left(\frac{1}{1-q^2}\right)^2$.
 - ▶ There is a q^0 , but we do not need to add a degree 0 2-cell $\mathcal{EF1}_n \Rightarrow \mathcal{FE1}_n$ since

• Example 4:
$$\langle EF1_n, FE1_n \rangle = (1+q^2) \left(\frac{1}{1-q^2}\right)^2$$
.

▶ There is a q^0 , but we do not need to add a degree 0 2-cell $\mathcal{EF1}_n \Rightarrow \mathcal{FE1}_n$ since

• Similarly for $\langle FE1_n, EF1_n \rangle$,

• Example 4:
$$\langle EF1_n, FE1_n \rangle = (1+q^2) \left(\frac{1}{1-q^2}\right)^2$$
.

▶ There is a q^0 , but we do not need to add a degree 0 2-cell $\mathcal{EF1}_n \Rightarrow \mathcal{FE1}_n$ since

Similarly for
$$\langle FE_{1n}, EF_{1n} \rangle$$
,

$$deg\left(\bigcup_{n \to \infty} n \right) = deg\left(\bigcap_{n \to \infty} n \right) = 0 \qquad n \to \infty = n \bigcup_{n \to \infty} n \bigcup_{n \to \infty} n = n \bigcup_{n \to \infty} n \bigcup_{n \to \infty} n = n \bigcup_{n \to \infty} n \bigcup_{n \to \infty} n \bigcup_{n \to \infty}$$

> One can show further relations and linear dependencies using Lusztig's pairing, e.g.

$$n =$$

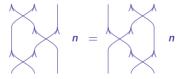
• Example 4:
$$\langle EF1_n, FE1_n \rangle = (1+q^2) \left(\frac{1}{1-q^2}\right)^2$$
.

▶ There is a q^0 , but we do not need to add a degree 0 2-cell $\mathcal{EF}\mathbf{1}_n \Rightarrow \mathcal{FE}\mathbf{1}_n$ since

$$deg\left(n \, \bigcup_{n \to \infty}\right) = deg\left(n \, \bigcup_{n \to \infty}\right) = 0 \qquad \qquad \swarrow^{n} := \bigcup_{n \to \infty} n = \bigcap_{n \to \infty} n$$

$$\Rightarrow \text{ Similarly for } \langle FE1_n, EF1_n \rangle,$$

> One can show further relations and linear dependencies using Lusztig's pairing, e.g.



It is hard to prove that one has obtained all the necessary generating 2-cells: Lauda proved that with the suited relations, the indecomposable 1-cells of U(sl₂) correspond up to shifts with elements of B.

▶ A **bubble** is an element of the algebras $End(1_n)$ for $n \in \mathbb{Z}$:

▶ A **bubble** is an element of the algebras $End(1_n)$ for $n \in \mathbb{Z}$:

$$\deg\left(\begin{array}{c} & n \\ & & \\ &$$

n

n

▶ A **bubble** is an element of the algebras $End(\mathbf{1}_n)$ for $n \in \mathbb{Z}$:

$$\deg\left(\begin{array}{c} & n \\ & & \\$$

n

n

- There is a link between the bubble algebras $End(1_n)$ in $\mathcal{U}(\mathfrak{sl}_2)$ and the algebra of symmetric polynomials $\Lambda(x_1,\ldots,x_n)$. This latter is generated by
 - elementary symmetric polynomials $e_r(x_1, \ldots, x_n) = \sum_{j_1 < \cdots < j_r} x_{j_1} \cdots x_{j_r}$

• complete symmetric polynomials $h_r(x_1, \ldots, x_n) = \sum_{m_1 + \cdots + m_n = r} x_1^{m_1} \cdots x_n^{m_n}$

$$\sum_{k\geq 0} (-1)^k e_k h_{\alpha-k} = \delta_{\alpha,0} \text{ with } h_j = e_j = 0 \text{ for } j < 0 \text{ and } e_1 = h_1 = 1$$

▶ A **bubble** is an element of the algebras $End(1_n)$ for $n \in \mathbb{Z}$:

$$\deg\left(\begin{array}{c} & n \\ & & \\$$

n

n

- There is a link between the bubble algebras $End(\mathbf{1}_n)$ in $\mathcal{U}(\mathfrak{sl}_2)$ and the algebra of symmetric polynomials $\Lambda(x_1,\ldots,x_n)$. This latter is generated by
 - elementary symmetric polynomials $e_r(x_1, \ldots, x_n) = \sum_{j_1 < \cdots < j_r} x_{j_1} \cdots x_{j_r}$

• complete symmetric polynomials $h_r(x_1, \ldots, x_n) = \sum_{m_1 + \cdots + m_n = r} x_1^{m_1} \cdots x_n^{m_n}$

$$\sum_{k\geq 0} (-1)^k e_k h_{lpha-k} = \delta_{lpha,0}$$
 with $h_j = e_j = 0$ for $j < 0$ and $e_1 = h_1 = 1$.

For a partition $\lambda = (\lambda_1, \dots, \lambda_n)$, define $e_{\lambda} := e_{\lambda_1} \dots e_{\lambda_n}$, then there is an injective mapping

$$\phi^{n} : \Lambda(x_{1}, \dots, x_{n}) \longrightarrow \operatorname{End}(\mathbf{1}_{n})$$

$$e_{\lambda} = e_{\lambda_{1}} \dots e_{\lambda_{m}} \mapsto \begin{cases} n & & & \\ & & & \\ n & & & \\ & & &$$

and define $e_{\lambda,n} := \phi^n(e_{\lambda})$.

37/41 ▲□▶ ▲셸▶ ▲콜▶ ▲콜▶ 콜 ∽��♡

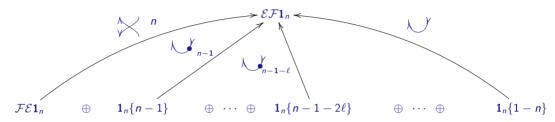
Lifting of \mathfrak{sl}_2 -relations

► To lift the relation $EF1_n - FE1_n = [n]1_n$ of U, one proves isomorphisms of the form $\mathcal{EF}1_n \cong \mathcal{FE}1_n \oplus \mathbf{1}_n^{\oplus [n]}$ for $n \ge 0$, $\mathcal{FE}1_n \cong \mathcal{EF}1_n \oplus \mathbf{1}_n^{\oplus [-n]}$ for $n \le 0$.

Lifting of sl₂-relations

► To lift the relation $EF1_n - FE1_n = [n]1_n$ of U, one proves isomorphisms of the form $\mathcal{EF1}_n \cong \mathcal{FE1}_n \oplus \mathbf{1}_n^{\oplus [n]}$ for $n \ge 0$, $\mathcal{FE1}_n \cong \mathcal{EF1}_n \oplus \mathbf{1}_n^{\oplus [-n]}$ for $n \le 0$.

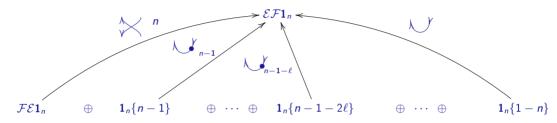
▶ For $n \ge 0$, we have a mapping $\mathcal{FE}\mathbf{1}_n \oplus \mathbf{1}_n^{\oplus[n]} \to \mathcal{EF}\mathbf{1}_n$ given by



Lifting of \mathfrak{sl}_2 -relations

► To lift the relation $EF1_n - FE1_n = [n]1_n$ of U, one proves isomorphisms of the form $\mathcal{EF1}_n \cong \mathcal{FE1}_n \oplus \mathbf{1}_n^{\oplus [n]}$ for $n \ge 0$, $\mathcal{FE1}_n \cong \mathcal{EF1}_n \oplus \mathbf{1}_n^{\oplus [-n]}$ for $n \le 0$.

▶ For $n \ge 0$, we have a mapping $\mathcal{FE}\mathbf{1}_n \oplus \mathbf{1}_n^{\oplus[n]} \to \mathcal{EF}\mathbf{1}_n$ given by



We will explicit an inverse by its components on each summand: ζⁿ₊ for the *FE*1_n summand, and ζ^ℓ₊ for 0 ≤ l ≤ n − 1 for other summands. Using Lusztig's pairing,

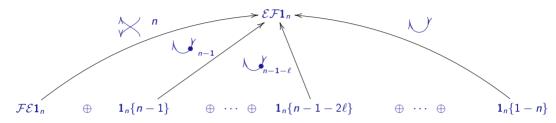
n

for some coefficients $\alpha_i^\ell(n) \in \mathbb{K}$ that are determined by $\delta_{b,0} = \sum_{\lambda: |\lambda| \le b} \alpha_\lambda^\ell(n) e_{\lambda,n} e_{b-|\lambda|,n}$.

Lifting of \mathfrak{sl}_2 -relations

► To lift the relation $EF1_n - FE1_n = [n]1_n$ of U, one proves isomorphisms of the form $\mathcal{EF1}_n \cong \mathcal{FE1}_n \oplus \mathbf{1}_n^{\oplus [n]}$ for $n \ge 0$, $\mathcal{FE1}_n \cong \mathcal{EF1}_n \oplus \mathbf{1}_n^{\oplus [-n]}$ for $n \le 0$.

▶ For $n \ge 0$, we have a mapping $\mathcal{FE}\mathbf{1}_n \oplus \mathbf{1}_n^{\oplus[n]} \to \mathcal{EF}\mathbf{1}_n$ given by



We will explicit an inverse by its components on each summand: ζⁿ₊ for the *FE*1_n summand, and ζ^ℓ₊ for 0 ≤ l ≤ n − 1 for other summands. Using Lusztig's pairing,

for some coefficients $\alpha_i^\ell(n) \in \mathbb{K}$ that are determined by $\delta_{b,0} = \sum_{\lambda:|\lambda| \le b} \alpha_\lambda^\ell(n) e_{\lambda,n} e_{b-|\lambda|,n}$.

Khovanov and Lauda introduced fake bubbles to obtain relations that are fully diagrammatic:

$$\bigcap_{i=1}^{n} = \operatorname{id}_{1_{0}} = \bigcap_{i=1}^{n}, \qquad \qquad \bigcap_{n=1+j}^{n} = \begin{cases} \sum_{\lambda:|\lambda|=j} \alpha_{\lambda}^{j}(n) \sum_{i=n-1+\lambda_{1}}^{n} \cdots \sum_{i=n-1+\lambda_{m}}^{n} & \text{if } 0 \leq j < -n+1 \\ 0 & \text{if } j < 0. \end{cases}$$

for n = 0 and n < 0 respectively, with a similar definition in the case n > 0.

8/41

Conclusion : generating 2-cells and relations

 $\blacktriangleright U(\mathfrak{sl}_2)$ admits for generating 2-cells:

$$\bigcup_{n} : \mathbf{1}_{n} \Rightarrow \mathcal{FE}\mathbf{1}_{n} \qquad \bigcup_{n} : \mathbf{1}_{n} \Rightarrow \mathcal{EF}\mathbf{1}_{n} \qquad \qquad \bigcap^{n} : \mathcal{FE}\mathbf{1}_{n} \Rightarrow \mathbf{1}_{n} \qquad \bigcap^{n} : \mathcal{EF}\mathbf{1}_{n} \to \mathbf{1}_{n}$$

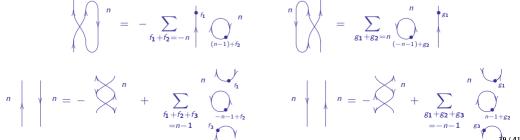
Conclusion : generating 2-cells and relations

 $\begin{array}{c|c} \mathcal{U}(\mathfrak{sl}_{2}) \text{ admits for generating 2-cells:} \\ & &$

- These are subject to relations
 - isotopy relations for caps and cups, and cyclicity relations for dots and crossings:

n + 2 = n +

- Negative degree bubbles are 0, bubbles of degree 0 are identities, and infinite Grassmannian relation.
- Quantum sl₂-relations:



for all $n \in \mathbb{Z}$. Whenever the summations are nonzero they utilize fake bubbles.

Difficulty 1 : Find a convenient presentation, with as less generators as possible.

- **Difficulty** 1 : Find a convenient presentation, with as less generators as possible.
- Difficulty 2 : If a pivotal linear 2-category admits bubble slide relations, it can not be presented by a terminating polygraph:

$$n-1$$
 $n-1$ $n-1$ $n-1$ $n-1$ $n-1$

• We work with quasi-terminating rewriting systems, that is terminating up to rewriting loops.

- **Difficulty** 1 : Find a convenient presentation, with as less generators as possible.
- Difficulty 2 : If a pivotal linear 2-category admits bubble slide relations, it can not be presented by a terminating polygraph:

$$n-1$$
 $n-1$ $n-1$

• We work with quasi-terminating rewriting systems, that is terminating up to rewriting loops.

Difficulty 3 : Many relations are induced from other ones by a transformation by isotopy.

- To avoid orienting too many relations, we rewrite modulo isotopy.
- Split the system of rules into two parts: a set E of 'equalities', not oriented anymore, and a set R of oriented relations.

- **Difficulty** 1 : Find a convenient presentation, with as less generators as possible.
- Difficulty 2 : If a pivotal linear 2-category admits bubble slide relations, it can not be presented by a terminating polygraph:

$$n-1$$
 $n-1$ $n-1$ $n-1$ $n-1$ $n-1$

We work with quasi-terminating rewriting systems, that is terminating up to rewriting loops.

Difficulty 3 : Many relations are induced from other ones by a transformation by isotopy.

- To avoid orienting too many relations, we rewrite modulo isotopy.
- Split the system of rules into two parts: a set E of 'equalities', not oriented anymore, and a set R of oriented relations.
- Facilitate the confluence analysis of some branchings.
- Reduce the number of critical branchings to consider.

- **Difficulty** 1 : Find a convenient presentation, with as less generators as possible.
- Difficulty 2 : If a pivotal linear 2-category admits bubble slide relations, it can not be presented by a terminating polygraph:

$$n-1$$
 $n-1$ $n-1$ $n-1$ $n-1$ $n-1$

We work with quasi-terminating rewriting systems, that is terminating up to rewriting loops.

Difficulty 3 : Many relations are induced from other ones by a transformation by isotopy.

- To avoid orienting too many relations, we rewrite modulo isotopy.
- Split the system of rules into two parts: a set E of 'equalities', not oriented anymore, and a set R of oriented relations.
- Facilitate the confluence analysis of some branchings.
- Reduce the number of critical branchings to consider.
- However, can bring new shapes of rewriting cycles to take into account, and critical branchings are harder to list, since they consist in application of relations on two diagrams that are *E*-congruent.

Thank you for your attention.