3-polygraphs and Squier's completion Theorem

Uran Meha

Institut Camille Jordan, Université de Lyon 1

Séminaire de réécriture algébrique

28 January 2021

II. Coherence from convergence

III. Homology via Squier

IV. Coherent presentations of plactic monoids

Definition

► A 3-category is a category *enriched* in 2**Cat**.

- ► A 3-category is a category *enriched* in 2**Cat**.
- It is the data

- ► A 3-category is a category *enriched* in 2**Cat**.
- It is the data
 - \blacktriangleright a category C

- ► A 3-category is a category *enriched* in 2**Cat**.
- It is the data
 - \blacktriangleright a category C
 - the hom-spaces $\hom_{\mathcal{C}}(p,q)$ are 2-categories

- ► A 3-category is a category *enriched* in 2**Cat**.
- It is the data
 - \blacktriangleright a category C
 - the hom-spaces $\hom_{\mathcal{C}}(p, q)$ are 2-categories
- ▶ Three types of compositions $\star_0, \star_1, \star_2$ to compose 3-cells

Definition

- ► A 3-category is a category *enriched* in 2**Cat**.
- It is the data
 - \blacktriangleright a category C
 - the hom-spaces $\hom_{\mathcal{C}}(p, q)$ are 2-categories
- ▶ Three types of compositions $\star_0, \star_1, \star_2$ to compose 3-cells
- Exchange relations:

Definition

- ► A 3-category is a category *enriched* in 2**Cat**.
- It is the data
 - ▶ a category C
 - the hom-spaces $\hom_{\mathcal{C}}(p, q)$ are 2-categories
- ▶ Three types of compositions $\star_0, \star_1, \star_2$ to compose 3-cells
- Exchange relations:

 $(A \star_i B) \star_j (A' \star_1 B') = (A \star_j A') \star_i (B \star_j B').$

▶ for x an *i*-cell with i = 0, 1, 2, there is an identity 3-cell $1_x : x \Rightarrow x$

Definition

- ► A 3-category is a category *enriched* in 2**Cat**.
- It is the data
 - ► a category C
 - the hom-spaces $\hom_{\mathcal{C}}(p, q)$ are 2-categories
- ▶ Three types of compositions $\star_0, \star_1, \star_2$ to compose 3-cells
- Exchange relations:

 $(A \star_i B) \star_j (A' \star_1 B') = (A \star_j A') \star_i (B \star_j B').$

for x an *i*-cell with *i* = 0, 1, 2, there is an identity 3-cell 1_x : x ⇒ x
informally

Definition

- ► A 3-category is a category *enriched* in 2**Cat**.
- It is the data
 - ▶ a category C
 - the hom-spaces $\hom_{\mathcal{C}}(p, q)$ are 2-categories
- ▶ Three types of compositions $\star_0, \star_1, \star_2$ to compose 3-cells
- Exchange relations:

- ▶ for x an *i*-cell with i = 0, 1, 2, there is an identity 3-cell $1_x : x \Rightarrow x$
- informally
 - can consider all cells of C as 3-cells

Definition

- ► A 3-category is a category *enriched* in 2**Cat**.
- It is the data
 - ▶ a category C
 - the hom-spaces $\hom_{\mathcal{C}}(p, q)$ are 2-categories
- ▶ Three types of compositions $\star_0, \star_1, \star_2$ to compose 3-cells
- Exchange relations:

- ▶ for x an *i*-cell with i = 0, 1, 2, there is an identity 3-cell $1_x : x \Rightarrow x$
- ► informally
 - can consider all cells of C as 3-cells
 - (flawed) geometric point of view

Definition

- ► A 3-category is a category *enriched* in 2**Cat**.
- It is the data
 - ▶ a category C
 - the hom-spaces $\hom_{\mathcal{C}}(p, q)$ are 2-categories
- ▶ Three types of compositions $\star_0, \star_1, \star_2$ to compose 3-cells
- Exchange relations:

- ▶ for x an *i*-cell with i = 0, 1, 2, there is an identity 3-cell $1_x : x \Rightarrow x$
- ► informally
 - can consider all cells of C as 3-cells
 - (flawed) geometric point of view

Cellular extensions

Cellular extensions

 \blacktriangleright C a 2-category

Cellular extensions

- \blacktriangleright C a 2-category
- ▶ 2-spheres of C are

 $Sph(C) = \{(f,g) \text{ pair of 2-cells } | s_1(f) = s_1(g), t_1(f) = t_1(g)\}$

Cellular extensions

- \blacktriangleright C a 2-category
- ▶ 2-spheres of C are

 $Sph(C) = \{(f,g) \text{ pair of 2-cells } | s_1(f) = s_1(g), t_1(f) = t_1(g)\}$

Cellular extension of C is a set Γ and a map $\Gamma \longrightarrow Sph(C)$

Cellular extensions

- \blacktriangleright C a 2-category
- ▶ 2-spheres of C are

 $Sph(C) = \{(f,g) \text{ pair of 2-cells } | s_1(f) = s_1(g), t_1(f) = t_1(g)\}$

▶ Cellular extension of C is a set Γ and a map $\Gamma \longrightarrow Sph(C)$

▶ Congruence on C is an equivalence relation \equiv on the 2-spheres satisfying

Cellular extensions

- \blacktriangleright C a 2-category
- ▶ 2-spheres of C are

 $Sph(C) = \{(f,g) \text{ pair of 2-cells } | s_1(f) = s_1(g), t_1(f) = t_1(g)\}$

Cellular extension of C is a set Γ and a map $\Gamma \longrightarrow Sph(C)$

▶ Congruence on C is an equivalence relation \equiv on the 2-spheres satisfying

if $f \equiv g$ then $w \star_0 (h \star_1 f \star_1 k) \star_0 w' \equiv w \star_0 (h \star_1 g \star_1 k) \star_0 w'$

▶ a cellular extension Γ generates a congruence \equiv_{Γ}

Cellular extensions

- \blacktriangleright C a 2-category
- ▶ 2-spheres of C are

 $Sph(C) = \{(f,g) \text{ pair of 2-cells } | s_1(f) = s_1(g), t_1(f) = t_1(g)\}$

Cellular extension of C is a set Γ and a map $\Gamma \longrightarrow Sph(C)$

▶ Congruence on C is an equivalence relation \equiv on the 2-spheres satisfying

- ► a cellular extension Γ generates a congruence \equiv_{Γ}
- ▶ Quotient category C / \equiv_{Γ}

Cellular extensions

- \blacktriangleright C a 2-category
- ▶ 2-spheres of C are

 $Sph(C) = \{(f,g) \text{ pair of 2-cells } | s_1(f) = s_1(g), t_1(f) = t_1(g)\}$

Cellular extension of C is a set Γ and a map $\Gamma \longrightarrow Sph(C)$

▶ Congruence on C is an equivalence relation \equiv on the 2-spheres satisfying

- ► a cellular extension Γ generates a congruence \equiv_{Γ}
- ▶ Quotient category C / \equiv_{Γ}
 - O-cells and 1-cells preserved

Cellular extensions

- \blacktriangleright C a 2-category
- ▶ 2-spheres of C are

 $Sph(C) = \{(f,g) \text{ pair of 2-cells } | s_1(f) = s_1(g), t_1(f) = t_1(g)\}$

Cellular extension of C is a set Γ and a map $\Gamma \longrightarrow Sph(C)$

▶ Congruence on C is an equivalence relation \equiv on the 2-spheres satisfying

- ► a cellular extension Γ generates a congruence \equiv_{Γ}
- ▶ Quotient category C / \equiv_{Γ}
 - O-cells and 1-cells preserved
 - ▶ 2-cells = equivalence classes of 2-cells of C modulo \equiv_{Γ}

► A cellular extension Γ is acyclic if

f, g parallel 2-cells, then $f \equiv_{\Gamma} g$

► A cellular extension Γ is acyclic if

f,g parallel 2-cells, then $f \equiv_{\Gamma} g$

• trivial cellular extension $\Gamma = \text{Sph}(\mathcal{C})$

► A cellular extension Γ is acyclic if

f,g parallel 2-cells, then $f \equiv_{\Gamma} g$

- ► trivial cellular extension $\Gamma = \text{Sph}(\mathcal{C})$
- generally try to find *minimal* cellular extension

► A cellular extension Γ is acyclic if

f,g parallel 2-cells, then $f \equiv_{\Gamma} g$

- trivial cellular extension $\Gamma = Sph(C)$
- generally try to find *minimal* cellular extension
- geometric point of view: homotopy basis = acyclic cellular extension

3-polygraphs

► A cellular extension Γ is acyclic if

f,g parallel 2-cells, then $f \equiv_{\Gamma} g$

- trivial cellular extension $\Gamma = Sph(C)$
- generally try to find *minimal* cellular extension
- geometric point of view: homotopy basis = acyclic cellular extension

3-polygraphs

the data (X₂, X₃) with X₂ a 2-polygraph, and X₃ a cellular extension of X₂[⊤]. With source and target maps, it is

$$X_0 \coloneqq X_1^* \coloneqq X_2^\top \coloneqq X_3$$

► A cellular extension Γ is acyclic if

f,g parallel 2-cells, then $f \equiv_{\Gamma} g$

- trivial cellular extension $\Gamma = Sph(C)$
- generally try to find *minimal* cellular extension
- geometric point of view: homotopy basis = acyclic cellular extension

3-polygraphs

► the data (X₂, X₃) with X₂ a 2-polygraph, and X₃ a cellular extension of X₂^T. With source and target maps, it is

$$X_0 \coloneqq X_1^* \coloneqq X_2^\top \coloneqq X_3$$

► A cellular extension Γ is acyclic if

f,g parallel 2-cells, then $f \equiv_{\Gamma} g$

- trivial cellular extension $\Gamma = Sph(C)$
- generally try to find *minimal* cellular extension
- geometric point of view: homotopy basis = acyclic cellular extension

3-polygraphs

► the data (X₂, X₃) with X₂ a 2-polygraph, and X₃ a cellular extension of X₂^T. With source and target maps, it is

$$X_0 \coloneqq X_1^* \coloneqq X_2^\top \coloneqq X_3$$

- generalizes notion of 2-polygraphs
- tools to generate free 3-categories and (2,1)-categories

► A cellular extension Γ is acyclic if

f,g parallel 2-cells, then $f \equiv_{\Gamma} g$

- trivial cellular extension $\Gamma = Sph(C)$
- generally try to find *minimal* cellular extension
- geometric point of view: homotopy basis = acyclic cellular extension

3-polygraphs

► the data (X₂, X₃) with X₂ a 2-polygraph, and X₃ a cellular extension of X₂^T. With source and target maps, it is

$$X_0 \coloneqq X_1^* \coloneqq X_2^\top \coloneqq X_3$$

- generalizes notion of 2-polygraphs
- tools to generate free 3-categories and (2,1)-categories
- extended presentation of categories

- underlying 2-category is X_2^{\top}
- ▶ 3-cells are formal compositions by $\star_0, \star_1, \star_2$ of 3-cells in $X_3 \sqcup X_3^-$

- underlying 2-category is X_2^{\top}
- ▶ 3-cells are formal compositions by $\star_0, \star_1, \star_2$ of 3-cells in $X_3 \sqcup X_3^-$
- ▶ Coherent presentation of a 1-category C is a (3,1)-polygraph X so that

- underlying 2-category is X_2^{\top}
- ▶ 3-cells are formal compositions by $\star_0, \star_1, \star_2$ of 3-cells in $X_3 \sqcup X_3^-$
- ▶ Coherent presentation of a 1-category C is a (3,1)-polygraph X so that
 - \blacktriangleright X₂ presents C
- underlying 2-category is X_2^{\top}
- ▶ 3-cells are formal compositions by $\star_0, \star_1, \star_2$ of 3-cells in $X_3 \sqcup X_3^-$
- ▶ Coherent presentation of a 1-category C is a (3,1)-polygraph X so that
 - \blacktriangleright X₂ presents C
 - X_3 an acyclic cellular extension of X_2^{\top}

- underlying 2-category is X_2^{\top}
- ▶ 3-cells are formal compositions by $\star_0, \star_1, \star_2$ of 3-cells in $X_3 \sqcup X_3^-$
- ▶ Coherent presentation of a 1-category C is a (3,1)-polygraph X so that
 - \blacktriangleright X₂ presents C
 - ► X_3 an acyclic cellular extension of X_2^{\top}
- Interested in *finite* coherent presentations

- underlying 2-category is X_2^{\top}
- ▶ 3-cells are formal compositions by $\star_0, \star_1, \star_2$ of 3-cells in $X_3 \sqcup X_3^-$
- ▶ Coherent presentation of a 1-category C is a (3,1)-polygraph X so that
 - X₂ presents C
 - X_3 an acyclic cellular extension of X_2^{\top}
- Interested in *finite* coherent presentations
- ► A 1-category C is of finite derivation type (FDT) if it admits a finite coherent presentation

- underlying 2-category is X_2^{\top}
- ▶ 3-cells are formal compositions by $\star_0, \star_1, \star_2$ of 3-cells in $X_3 \sqcup X_3^-$
- ▶ Coherent presentation of a 1-category C is a (3,1)-polygraph X so that
 - X₂ presents C
 - > X_3 an acyclic cellular extension of X_2^{\top}
- Interested in *finite* coherent presentations
- ► A 1-category C is of finite derivation type (FDT) if it admits a finite coherent presentation
- ► Thm (SOK): FDT is independent of choice of finite 2-polygraph.

▶ Idea: Given a convergent polygraph X of C, identify a homotopy basis of X_2^{\top}

- ▶ Idea: Given a convergent polygraph X of C, identify a homotopy basis of X_2^{\top}
- $Crit(X) = \{critical branchings of X\}, i.e objects of the form$

w w

that are *minimal*.

- ▶ Idea: Given a convergent polygraph X of C, identify a homotopy basis of X_2^{\top}
- $Crit(X) = \{critical branchings of X\}, i.e objects of the form$

that are *minimal*.

Family of generating confluences of X is a cellular extension Γ of X₂[⊤] containing precisely one 3-cell

for every element of Crit(X).

Squier's completion of a convergent 2-polygraph X is the (3,1)-polygraph $Sq(X) = (X, \Gamma)$, with Γ generating family of confluences

- Squier's completion of a convergent 2-polygraph X is the (3,1)-polygraph $Sq(X) = (X, \Gamma)$, with Γ generating family of confluences
- ► Thm (SOK): X a convergent presentation of C. Then Sq(X) a coherent presentation for C.

- Squier's completion of a convergent 2-polygraph X is the (3,1)-polygraph $Sq(X) = (X, \Gamma)$, with Γ generating family of confluences
- ► Thm (SOK): X a convergent presentation of C. Then Sq(X) a coherent presentation for C.
- Sketch of proof: Describe how to *pave* any given 2-sphere via elements of Γ.

- Squier's completion of a convergent 2-polygraph X is the (3,1)-polygraph $Sq(X) = (X, \Gamma)$, with Γ generating family of confluences
- ► Thm (SOK): X a convergent presentation of C. Then Sq(X) a coherent presentation for C.
- Sketch of proof: Describe how to *pave* any given 2-sphere via elements of Γ .
- Particularly useful in the specific case of presentations of monoids (i.e. 1-categories with a single 0-cell)

- Squier's completion of a convergent 2-polygraph X is the (3,1)-polygraph $Sq(X) = (X, \Gamma)$, with Γ generating family of confluences
- ► Thm (SOK): X a convergent presentation of C. Then Sq(X) a coherent presentation for C.
- Sketch of proof: Describe how to *pave* any given 2-sphere via elements of Γ.
- Particularly useful in the specific case of presentations of monoids (i.e. 1-categories with a single 0-cell)
- Question: How to constructively choose confluence diagrams for the critical branchings?

For monoids, there exists a constructive way of choosing a generating family of confluences

- For monoids, there exists a constructive way of choosing a generating family of confluences
- Consider M a monoid presented by a 2-polygraph X with one 0-cell *

- For monoids, there exists a constructive way of choosing a generating family of confluences
- Consider M a monoid presented by a 2-polygraph X with one 0-cell *
- ▶ $\pi: X_1^* \longrightarrow M$ the canonical projection, and $s: M \longrightarrow X_1^*$ a section, i.e.

 $\pi(s(u))=u.$

- For monoids, there exists a constructive way of choosing a generating family of confluences
- Consider M a monoid presented by a 2-polygraph X with one 0-cell *
- ▶ $\pi: X_1^* \longrightarrow M$ the canonical projection, and $s: M \longrightarrow X_1^*$ a section, i.e.

 $\pi(s(u))=u.$

- For monoids, there exists a constructive way of choosing a generating family of confluences
- Consider M a monoid presented by a 2-polygraph X with one 0-cell *
- ▶ $\pi: X_1^* \longrightarrow M$ the canonical projection, and $s: M \longrightarrow X_1^*$ a section, i.e.

 $\pi(s(u))=u.$

- For monoids, there exists a constructive way of choosing a generating family of confluences
- Consider M a monoid presented by a 2-polygraph X with one 0-cell *
- ▶ $\pi: X_1^* \longrightarrow M$ the canonical projection, and $s: M \longrightarrow X_1^*$ a section, i.e.

 $\pi(s(u))=u.$

▶ a normalization strategy for X is a map $\sigma: X_1^* \longrightarrow X_2^\top$ with

 $\sigma(u) = (u \Longrightarrow \widehat{u})$

- For monoids, there exists a constructive way of choosing a generating family of confluences
- Consider M a monoid presented by a 2-polygraph X with one 0-cell *
- ▶ $\pi: X_1^* \longrightarrow M$ the canonical projection, and $s: M \longrightarrow X_1^*$ a section, i.e.

 $\pi(s(u))=u.$

▶ a normalization strategy for X is a map $\sigma: X_1^* \longrightarrow X_2^\top$ with

 $\sigma(u) = (u \Longrightarrow \widehat{u})$

• σ is called left-normalizing (resp. right-normalizing) if

 $\sigma_{uv} = (\sigma_u \star_0 v) \star_1 \sigma_{\widehat{u}v}, \quad (\text{resp.}\sigma_{uv} = (u \star_0 \sigma_v) \star_1 \sigma_{u\widehat{v}})$

II. Coherence from convergence
 ► Any 2-polygraph admits a left (resp. right) normalization strategy.

- II. Coherence from convergence
 ► Any 2-polygraph admits a left (resp. right) normalization strategy.
 - \blacktriangleright Let X be a convergent polygraph.

- Any 2-polygraph admits a left (resp. right) normalization strategy.
- Let X be a convergent polygraph.
- For $u \in X_1^*$ define an order \leq on

 ${f: u \Longrightarrow v \mid f \text{ rewriting step}}$

by setting

 $t_1\alpha_1\mathbf{v}_1 \preceq t_2\alpha_2\mathbf{v}_2$

if $|t_1| \leq |t_2|$.

- Any 2-polygraph admits a left (resp. right) normalization strategy.
- Let X be a convergent polygraph.
- ► For $u \in X_1^*$ define an order \leq on

 ${f: u \Longrightarrow v \mid f \text{ rewriting step}}$

by setting

 $t_1\alpha_1\mathbf{v}_1 \preceq t_2\alpha_2\mathbf{v}_2$

if $|t_1| \leq |t_2|$.

• Denote by λ_u (resp. ρ_u) the minimal (resp. maximal) elements of this order.

- Any 2-polygraph admits a left (resp. right) normalization strategy.
- Let X be a convergent polygraph.
- ▶ For $u \in X_1^*$ define an order \leq on

 ${f: u \Longrightarrow v \mid f \text{ rewriting step}}$

by setting

 $t_1\alpha_1\mathbf{v}_1 \preceq t_2\alpha_2\mathbf{v}_2$

if $|t_1| \leq |t_2|$.

- Denote by λ_u (resp. ρ_u) the minimal (resp. maximal) elements of this order.
- Leftmost normalization strategy

 $\sigma_u := \lambda_u \star_1 \sigma(t(\lambda_u))$

- Any 2-polygraph admits a left (resp. right) normalization strategy.
- Let X be a convergent polygraph.
- For $u \in X_1^*$ define an order \preceq on

 ${f: u \Longrightarrow v \mid f \text{ rewriting step}}$

by setting

 $t_1\alpha_1\mathbf{v}_1 \preceq t_2\alpha_2\mathbf{v}_2$

if $|t_1| \leq |t_2|$.

- Denote by λ_u (resp. ρ_u) the minimal (resp. maximal) elements of this order.
- Leftmost normalization strategy

 $\sigma_u := \lambda_u \star_1 \sigma(t(\lambda_u))$

Rightmost normalization strategy

 $\sigma_u = \rho_u \star_1 \sigma_t(\rho_u)$

- Any 2-polygraph admits a left (resp. right) normalization strategy.
- Let X be a convergent polygraph.
- ▶ For $u \in X_1^*$ define an order \leq on

 ${f: u \Longrightarrow v \mid f \text{ rewriting step}}$

by setting

 $t_1\alpha_1\mathbf{v}_1 \preceq t_2\alpha_2\mathbf{v}_2$

if $|t_1| \leq |t_2|$.

- ▶ Denote by λ_u (resp. ρ_u) the minimal (resp. maximal) elements of this order.
- Leftmost normalization strategy

 $\sigma_u := \lambda_u \star_1 \sigma(t(\lambda_u))$

Rightmost normalization strategy

$$\sigma_u = \rho_u \star_1 \sigma_t(\rho_u)$$

We can choose a family of generating confluences via the leftmost and rightmost normalization strategies.

• Consider the free abelian monoid on three letters M_3

- Consider the free abelian monoid on three letters M_3
- ▶ a presentation for M_3 is the 2-polygraph

 $X = \langle 1, 2, 3 \mid 21 \Longrightarrow 12, 31 \Longrightarrow 13, 32 \Longrightarrow 23 \rangle$

- Consider the free abelian monoid on three letters M_3
- ▶ a presentation for M_3 is the 2-polygraph

 $X = \langle 1, 2, 3 \mid 21 \Longrightarrow 12, 31 \Longrightarrow 13, 32 \Longrightarrow 23 \rangle$

X is terminating (lexicographic order)

- Consider the free abelian monoid on three letters M_3
- ▶ a presentation for M_3 is the 2-polygraph

 $X = \langle 1, 2, 3 \mid 21 \Longrightarrow 12, 31 \Longrightarrow 13, 32 \Longrightarrow 23 \rangle$

- X is terminating (lexicographic order)
- X is confluent, thus convergent with normal forms

 $1^{a}2^{b}3^{c}$

for $a, b, c \in \mathbb{N}$

- Consider the free abelian monoid on three letters M_3
- ▶ a presentation for M_3 is the 2-polygraph

 $X = \langle 1, 2, 3 \mid 21 \Longrightarrow 12, 31 \Longrightarrow 13, 32 \Longrightarrow 23 \rangle$

- X is terminating (lexicographic order)
- X is confluent, thus convergent with normal forms

 $1^{a}2^{b}3^{c}$

for $a, b, c \in \mathbb{N}$ $\blacktriangleright X$ has one critical branching

use the leftmost normalization strategy to obtain a confluence diagram

use the leftmost normalization strategy to obtain a confluence diagram

Thus $(X, \{A\})$ with A the 3-cell above is a coherent presentation for M_3 .
II. Coherence from convergence

use the leftmost normalization strategy to obtain a confluence diagram

- Thus $(X, \{A\})$ with A the 3-cell above is a coherent presentation for M_3 .
- Remark: Normalization strategies provide a way for specifying a family of generating confluences. The *shape* of such confluence diagrams depends on the intrinsic nature of the monoid and its combinatorics.

► Let *M* be a monoid.

- ► Let *M* be a monoid.
- ▶ A resolution of the trivial $\mathbb{Z}M$ -module \mathbb{Z} is a long exact sequence

$$\cdots C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \longrightarrow \cdots C_1 \xrightarrow{d_1} C_0 \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0$$

with C_i being $\mathbb{Z}M$ -modules.

- ► Let *M* be a monoid.
- ▶ A resolution of the trivial $\mathbb{Z}M$ -module \mathbb{Z} is a long exact sequence

$$\cdots C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \longrightarrow \cdots C_1 \xrightarrow{d_1} C_0 \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0$$

with C_i being $\mathbb{Z}M$ -modules.

• if C_i are free, we call it a free resolution

- ► Let *M* be a monoid.
- ▶ A resolution of the trivial $\mathbb{Z}M$ -module \mathbb{Z} is a long exact sequence

$$\cdots C_{n+1} \stackrel{d_{n+1}}{\longrightarrow} C_n \stackrel{d_n}{\longrightarrow} C_{n-1} \longrightarrow \cdots C_1 \stackrel{d_1}{\longrightarrow} C_0 \stackrel{\varepsilon}{\longrightarrow} \mathbb{Z} \longrightarrow 0$$

with C_i being $\mathbb{Z}M$ -modules.

- if C_i are free, we call it a free resolution
- \blacktriangleright Given a free resolution of $\mathbb{Z},$ we associate the following chain complex

$$\cdots Z \otimes_{\mathbb{Z}M} C_{n+1} \xrightarrow{\widetilde{d}_{n+1}} \otimes_{\mathbb{Z}M} C_n \xrightarrow{\widetilde{d}_n} \otimes_{\mathbb{Z}M} C_{n-1} \longrightarrow \cdots C_1 \xrightarrow{\widetilde{d}_1} \otimes_{\mathbb{Z}M} C_0$$

- ► Let *M* be a monoid.
- ▶ A resolution of the trivial $\mathbb{Z}M$ -module \mathbb{Z} is a long exact sequence

$$\cdots C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \longrightarrow \cdots C_1 \xrightarrow{d_1} C_0 \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0$$

with C_i being $\mathbb{Z}M$ -modules.

• if C_i are free, we call it a free resolution

 \blacktriangleright Given a free resolution of $\mathbb{Z},$ we associate the following chain complex

$$\cdots Z \otimes_{\mathbb{Z}M} C_{n+1} \xrightarrow{\widetilde{d}_{n+1}} \otimes_{\mathbb{Z}M} C_n \xrightarrow{\widetilde{d}_n} \otimes_{\mathbb{Z}M} C_{n-1} \longrightarrow \cdots C_1 \xrightarrow{\widetilde{d}_1} \otimes_{\mathbb{Z}M} C_0$$

Homology of *M* with integral coefficients is defined by setting

 $H_n(M,\mathbb{Z}) = \ker(\widetilde{d}_n)/\operatorname{im}(\widetilde{d}_{n+1}),$

and we call it the n-th homology group of M.

Lower dimensional homology via Squier

Lower dimensional homology via Squier

Presentations of monoids provide a way of studying the homology of a monoid.

Lower dimensional homology via Squier

- Presentations of monoids provide a way of studying the homology of a monoid.
- In particular if X is a convergent presentation of M we obtain a partial free resolution

 $\mathbb{Z}M[X_2] \xrightarrow{d_2} \mathbb{Z}M[X_1] \xrightarrow{d_1} \mathbb{Z}M \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0$

Lower dimensional homology via Squier

- Presentations of monoids provide a way of studying the homology of a monoid.
- In particular if X is a convergent presentation of M we obtain a partial free resolution

 $\mathbb{Z}M[X_2] \xrightarrow{d_2} \mathbb{Z}M[X_1] \xrightarrow{d_1} \mathbb{Z}M \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0$

• If M admits a coherent presentation X, one extends this sequence to

 $\mathbb{Z}M[X_3] \xrightarrow{d_3} \mathbb{Z}M[X_2] \xrightarrow{d_2} \mathbb{Z}M[X_1] \xrightarrow{d_1} \mathbb{Z}M \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0$

with the boundary maps given by

$$\varepsilon\left(\sum_{u\in M}a_uu\right)=\sum a_u, \quad d_1(uv)=[u]+\overline{u}[v], \ d_{i+1}(A)=[s_i(A)]-[t_i(A)]$$

with i = 1, 2

Lower dimensional homology via Squier

- Presentations of monoids provide a way of studying the homology of a monoid.
- In particular if X is a convergent presentation of M we obtain a partial free resolution

 $\mathbb{Z}M[X_2] \xrightarrow{d_2} \mathbb{Z}M[X_1] \xrightarrow{d_1} \mathbb{Z}M \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0$

• If M admits a coherent presentation X, one extends this sequence to

 $\mathbb{Z}M[X_3] \xrightarrow{d_3} \mathbb{Z}M[X_2] \xrightarrow{d_2} \mathbb{Z}M[X_1] \xrightarrow{d_1} \mathbb{Z}M \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0$

with the boundary maps given by

$$\varepsilon\left(\sum_{u\in M}a_uu\right)=\sum a_u, \quad d_1(uv)=[u]+\overline{u}[v], \ d_{i+1}(A)=[s_i(A)]-[t_i(A)]$$

with i = 1, 2

▶ If X is finite, then $\mathbb{Z}M[X_i]$ are finitely generated free $\mathbb{Z}M$ -modules

 Computing Squier's completion for a (finite) convergent presentation is in general difficult.

- Computing Squier's completion for a (finite) convergent presentation is in general difficult.
- To compute coherent presentations for the plactic monoids PI(X), $X = A_n, B_n, C_n, D_n, G_2$ depends on the combinatorics of X.

- Computing Squier's completion for a (finite) convergent presentation is in general difficult.
- ► To compute coherent presentations for the plactic monoids PI(X), $X = A_n, B_n, C_n, D_n, G_2$ depends on the combinatorics of X.
- There is a point of view on these monoids which simplifies the problem of coherence.
- Crystal approach (types A and C)

- Computing Squier's completion for a (finite) convergent presentation is in general difficult.
- ► To compute coherent presentations for the plactic monoids PI(X), $X = A_n, B_n, C_n, D_n, G_2$ depends on the combinatorics of X.
- There is a point of view on these monoids which simplifies the problem of coherence.

Crystal approach (types A and C)

consider the two directed labeled graphs

$$A_n: 1 \xrightarrow{1} 2 \xrightarrow{2} \cdots \xrightarrow{n-2} n - 1 \xrightarrow{n-1} n$$

$$C_n: 1 \xrightarrow{1} 2 \xrightarrow{2} \cdots n \xrightarrow{n} \overline{n} \xrightarrow{n-1} \cdots \xrightarrow{2} \overline{2} \xrightarrow{1} \overline{1}$$

- Computing Squier's completion for a (finite) convergent presentation is in general difficult.
- ► To compute coherent presentations for the plactic monoids PI(X), $X = A_n, B_n, C_n, D_n, G_2$ depends on the combinatorics of X.
- There is a point of view on these monoids which simplifies the problem of coherence.

Crystal approach (types A and C)

consider the two directed labeled graphs

$$A_n: 1 \xrightarrow{1} 2 \xrightarrow{2} \cdots \xrightarrow{n-2} n - 1 \xrightarrow{n-1} n$$

$$C_n: 1 \xrightarrow{1} 2 \xrightarrow{2} \cdots n \xrightarrow{n} \overline{n} \xrightarrow{n-1} \cdots \xrightarrow{2} \overline{2} \xrightarrow{1} \overline{1}$$

- If $x \xrightarrow{i} y$, write $f_i \cdot x = y$ and $e_i \cdot y = x$.
- One defines a graph structure on A_n^* and C_n^* by defining

$$e_i.(uv) = \begin{cases} (e_i.u)v & \text{if } \varphi_i(u) \geq \varepsilon_i(v), \\ u(e_i.v) & \text{if } \varphi_i(u) < \varepsilon_i(v), \end{cases}$$

$$f_{i}.(uv) = \begin{cases} (f_{i}.u)v & \text{if } \varphi_{i}(u) > \varepsilon_{i}(v), \\ u(f_{i}.v) & \text{if } \varphi_{i}(u) \le \varepsilon_{i}(v), \end{cases}$$

$$e_i.(uv) = \begin{cases} (e_i.u)v & \text{if } \varphi_i(u) \ge \varepsilon_i(v), \\ u(e_i.v) & \text{if } \varphi_i(u) < \varepsilon_i(v), \end{cases}$$

$$f_{i}.(uv) = \begin{cases} (f_{i}.u)v & \text{if } \varphi_{i}(u) > \varepsilon_{i}(v), \\ u(f_{i}.v) & \text{if } \varphi_{i}(u) \le \varepsilon_{i}(v), \end{cases}$$

▶ One then defines a monoid associated to A_n and C_n via the congruence

 $w \sim w_1$ if $B(w) \cong B(w_1)$.

$$e_i.(uv) = \begin{cases} (e_i.u)v & \text{if } \varphi_i(u) \geq \varepsilon_i(v), \\ u(e_i.v) & \text{if } \varphi_i(u) < \varepsilon_i(v), \end{cases}$$

$$f_{i}.(uv) = \begin{cases} (f_{i}.u)v & \text{if } \varphi_{i}(u) > \varepsilon_{i}(v), \\ u(f_{i}.v) & \text{if } \varphi_{i}(u) \le \varepsilon_{i}(v), \end{cases}$$

▶ One then defines a monoid associated to A_n and C_n via the congruence

 $w \sim w_1$ if $B(w) \cong B(w_1)$.

• We have that the monoids obtained this way are in fact $PI(A_n)$ and $PI(C_n)$.

$$e_i.(uv) = \begin{cases} (e_i.u)v & \text{if } \varphi_i(u) \geq \varepsilon_i(v), \\ u(e_i.v) & \text{if } \varphi_i(u) < \varepsilon_i(v), \end{cases}$$

$$f_{i}.(uv) = \begin{cases} (f_{i}.u)v & \text{if } \varphi_{i}(u) > \varepsilon_{i}(v), \\ u(f_{i}.v) & \text{if } \varphi_{i}(u) \le \varepsilon_{i}(v), \end{cases}$$

> One then defines a monoid associated to A_n and C_n via the congruence

 $w \sim w_1$ if $B(w) \cong B(w_1)$.

- We have that the monoids obtained this way are in fact $PI(A_n)$ and $PI(C_n)$.
- Recall that these monoids admit finite convergent presentations, called the *column* presentations.

 $\mathsf{Cols} = \langle \mathsf{columns} \ c \ | \ c_1 c_2 \Longrightarrow d_1 d_2 \rangle$

with critical branchings of the form

$$e_i.(uv) = \begin{cases} (e_i.u)v & \text{if } \varphi_i(u) \geq \varepsilon_i(v), \\ u(e_i.v) & \text{if } \varphi_i(u) < \varepsilon_i(v), \end{cases}$$

$$f_{i}.(uv) = \begin{cases} (f_{i}.u)v & \text{if } \varphi_{i}(u) > \varepsilon_{i}(v), \\ u(f_{i}.v) & \text{if } \varphi_{i}(u) \le \varepsilon_{i}(v), \end{cases}$$

> One then defines a monoid associated to A_n and C_n via the congruence

 $w \sim w_1$ if $B(w) \cong B(w_1)$.

- We have that the monoids obtained this way are in fact $PI(A_n)$ and $PI(C_n)$.
- Recall that these monoids admit finite convergent presentations, called the *column* presentations.

 $\mathsf{Cols} = \langle \mathsf{columns} \ c \ | \ c_1 c_2 \Longrightarrow d_1 d_2 \rangle$

with critical branchings of the form

We then show that the graph operators e_i, f_i can be defined on the set Crit(Cols), and the shape of the confluence diagram is preserved by these operators.

- We then show that the graph operators e_i, f_i can be defined on the set Crit(Cols), and the shape of the confluence diagram is preserved by these operators.
- Given a critical branching, apply all the e_i possible to obtain a critical branching

 $(c_1c_2'c_3')^0$ $(c_1 c_2 c_3)$ $(c_1'' c_2'' c_3)^0$

- We then show that the graph operators e_i, f_i can be defined on the set Crit(Cols), and the shape of the confluence diagram is preserved by these operators.
- Given a critical branching, apply all the e_i possible to obtain a critical branching

▶ words of this form w^0 such that $e_i.w$ is undefined, are called highest weights

This way one completes the following reduction of the problem

This way one completes the following reduction of the problem

(coherent presentation for PI(X)) \equiv (confluence diagram for highest weights)

Remark: This approach works in any abstract setting given the following data:

This way one completes the following reduction of the problem

- **Remark:** This approach works in any abstract setting given the following data:
 - F a directed labeled graph with certain finiteness conditions

This way one completes the following reduction of the problem

- **Remark:** This approach works in any abstract setting given the following data:
 - F a directed labeled graph with certain finiteness conditions
 - \blacktriangleright X(Γ) a convergent presentation for the monoid associated to Γ

This way one completes the following reduction of the problem

(coherent presentation for PI(X)) \equiv (confluence diagram for highest weights)

Remark: This approach works in any abstract setting given the following data:

- F a directed labeled graph with certain finiteness conditions
- \succ X(Γ) a convergent presentation for the monoid associated to Γ
- ▶ the big graph ^{Γ*} contains highest weights.

This way one completes the following reduction of the problem

- **Remark:** This approach works in any abstract setting given the following data:
 - F a directed labeled graph with certain finiteness conditions
 - \blacktriangleright X(Γ) a convergent presentation for the monoid associated to Γ
 - ▶ the big graph ^{Γ*} contains highest weights.
- To complete the study of coherence for these monoids in type A and C, it suffices to compute the confluence diagrams at highest weights.

This way one completes the following reduction of the problem

- **Remark:** This approach works in any abstract setting given the following data:
 - F a directed labeled graph with certain finiteness conditions
 - \blacktriangleright X(Γ) a convergent presentation for the monoid associated to Γ
 - ▶ the big graph ^{Γ*} contains highest weights.
- To complete the study of coherence for these monoids in type A and C, it suffices to compute the confluence diagrams at highest weights.
- Introduce a computational model which

This way one completes the following reduction of the problem

- **Remark:** This approach works in any abstract setting given the following data:
 - F a directed labeled graph with certain finiteness conditions
 - \blacktriangleright X(Γ) a convergent presentation for the monoid associated to Γ
 - ▶ the big graph ^{Γ*} contains highest weights.
- To complete the study of coherence for these monoids in type A and C, it suffices to compute the confluence diagrams at highest weights.
- Introduce a computational model which
 - paramterizes highest weights
IV. Coherent presentations of plactic monoids

This way one completes the following reduction of the problem

(coherent presentation for PI(X)) \equiv (confluence diagram for highest weights)

- **Remark:** This approach works in any abstract setting given the following data:
 - F a directed labeled graph with certain finiteness conditions
 - \blacktriangleright X(Γ) a convergent presentation for the monoid associated to Γ
 - ▶ the big graph ^{Γ*} contains highest weights.
- To complete the study of coherence for these monoids in type A and C, it suffices to compute the confluence diagrams at highest weights.
- Introduce a computational model which
 - paramterizes highest weights
 - one can compute normal forms in X using them

IV. Coherent presentations of plactic monoids A-trees and C-trees

IV. Coherent presentations of plactic monoids A-trees and C-trees

► The model for type *A* is of the form

and can be used to show that the confluence diagrams of critical branchings for $Cols(A_n)$ are of the form $t'u'v \stackrel{t'\alpha_{u'v}}{\Longrightarrow} t'u''v'$

IV. Coherent presentations of plactic monoids

IV. Coherent presentations of plactic monoids

► The model for type C is of the form

and can be used to show that the confluence diagrams of critical branchings of $Cols(C_n)$ are of the form

Thank you very much for your attention!