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Cellular extensions
» C a 2-category
» 2-spheres of C are

Sph(C) = {(f, g) pair of 2-cells | s1(f) = s1(g), ta(f) = t1(g)}

» Cellular extension of C is a set I and a map ' — Sph(C)
» Congruence on C is an equivalence relation = on the 2-spheres satisfying

if f =g then wxg (hx1 fx1 k)xow = wxg (hxy g*1 k)% w

» a cellular extension I generates a congruence =r
» Quotient category C/ =r
» 0-cells and 1-cells preserved
» 2-cells = equivalence classes of 2-cells of C modulo =r
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» A cellular extension I is acyclic if

f,g parallel 2-cells, then f =r g

> trivial cellular extension ' = Sph(C)

» generally try to find minimal cellular extension

» geometric point of view: homotopy basis = acyclic cellular extension
3-polygraphs

> the data (X2, X3) with X, a 2-polygraph, and X3 a cellular extension of X, . With
source and target maps, it is

Xo &= X7 & )(2T = X3
> generalizes notion of 2-polygraphs

> tools to generate free 3-categories and (2,1)-categories
> extended presentation of categories
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> free (3,1)-category generated by a 3-polygraph X, denoted X"
» underlying 2-category is X,
» 3-cells are formal compositions by *o, 1, %2 of 3-cells in X3 LI X5
> Coherent presentation of a 1-category C is a (3,1)-polygraph X so that
> X5 presents C
> Xs an acyclic cellular extension of X,

» Interested in finite coherent presentations

» A 1-category C is of finite derivation type (FDT) if it admits a finite coherent
presentation

» Thm (SOK): FDT is independent of choice of finite 2-polygraph.
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> Idea: Given a convergent polygraph X of C, identify a homotopy basis of X,
» Crit(X) = {critical branchings of X}, i.e objects of the form

W/

that are minimal.

» Family of generating confluences of X is a cellular extension I of X, containing
precisely one 3-cell

for every element of Crit(X).
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> Squier's completion of a convergent 2-polygraph X is the (3,1)-polygraph
Sq(X) = (X, T), with I generating family of confluences

» Thm (SOK): X a convergent presentation of C. Then Sq(X) a coherent
presentation for C.

» Sketch of proof: Describe how to pave any given 2-sphere via elements of I

» Particularly useful in the specific case of presentations of monoids (i.e. 1-categories
with a single 0-cell)

» Question: How to constructively choose confluence diagrams for the critical
branchings?



[I. Coherence from convergence

» For monoids, there exists a constructive way of choosing a generating family of
confluences



[I. Coherence from convergence

» For monoids, there exists a constructive way of choosing a generating family of
confluences

» Consider M a monoid presented by a 2-polygraph X with one 0O-cell *



[I. Coherence from convergence

» For monoids, there exists a constructive way of choosing a generating family of
confluences

» Consider M a monoid presented by a 2-polygraph X with one 0O-cell *
» 7 : X — M the canonical projection, and s : M — X a section, i.e.

m(s(u)) = u.



[I. Coherence from convergence

» For monoids, there exists a constructive way of choosing a generating family of
confluences

» Consider M a monoid presented by a 2-polygraph X with one 0O-cell *
» 7 : X — M the canonical projection, and s : M — X a section, i.e.

m(s(u)) = u.

> denote s(u) =u



[I. Coherence from convergence

» For monoids, there exists a constructive way of choosing a generating family of
confluences

» Consider M a monoid presented by a 2-polygraph X with one 0O-cell *
» 7 : X — M the canonical projection, and s : M — X a section, i.e.

m(s(u)) = u.

> denote s(u) =u
> 1=1



[I. Coherence from convergence

» For monoids, there exists a constructive way of choosing a generating family of
confluences

» Consider M a monoid presented by a 2-polygraph X with one 0O-cell *
» 7 : X — M the canonical projection, and s : M — X a section, i.e.

m(s(u)) = u.

> denote s(u) =u
> 1=1

» a normalization strategy for X is a map o : X; — X5 with

o(u) = (v = 0)



[I. Coherence from convergence

» For monoids, there exists a constructive way of choosing a generating family of
confluences

» Consider M a monoid presented by a 2-polygraph X with one 0O-cell *
» 7 : X — M the canonical projection, and s : M — X a section, i.e.

m(s(u)) = u.

> denote s(u) =u
> 1=1

» a normalization strategy for X is a map o : X; — X5 with

o(u) = (v = 0)

» o is called left-normalizing (resp. right-normalizing) if

Oyy = (Ju *0 V) *1 OGvs (reSP-qu - (U *0 Uv) *1 Uu?)
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[I. Coherence from convergence
> Any 2-polygraph admits a left (resp. right) normalization strategy.
» Let X be a convergent polygraph.
» For u € X{ define an order < on

{f : u= v | f rewriting step}
by setting
tioqvy X thoove
if [t1] < |ta].
Denote by A\, (resp. p,) the minimal (resp. maximal) elements of this order.
Leftmost normalization strategy

oy = Ay *10(t(A))

vy

v

Rightmost normalization strategy

oy = pu*10¢(pu)

v

We can choose a family of generating confluences via the leftmost and rightmost
normalization strategies.
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[I. Coherence from convergence
Example

» Consider the free abelian monoid on three letters M3
» a presentation for M3 is the 2-polygraph

X =(1,2,3]21 = 12, 31 = 13, 32 =23 )

> X is terminating (lexicographic order)
» X is confluent, thus convergent with normal forms

172°3¢
for a,b,c € N
» X has one critical branching
312

321

231
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[I. Coherence from convergence

» use the leftmost normalization strategy to obtain a confluence diagram

312 ——= 132\
321\ 123

231 =—=213
» Thus (X, {A}) with A the 3-cell above is a coherent presentation for Ms.
» Remark: Normalization strategies provide a way for specifying a family of

generating confluences. The shape of such confluence diagrams depends on the
intrinsic nature of the monoid and its combinatorics.
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II1. Homology via Squier
Homology of monoids

» Let M be a monoid.

» A resolution of the trivial ZM-module Z is a long exact sequence

n+1

G e, e G G0

with C; being ZM-modules.
» if C; are free, we call it a free resolution

» Given a free resolution of Z, we associate the following chain complex

dn d» d
o Z@am Cop1 — @zmCy —= @zmCoo1 — -+ (1 2 @zmGo

» Homology of M with integral coefficients is defined by setting
Hy(M,Z) = ker(gn)/im(g,,_,_l),

and we call it the n-th homology group of M.
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Lower dimensional homology via Squier
» Presentations of monoids provide a way of studying the homology of a monoid.

» In particular if X is a convergent presentation of M we obtain a partial free
resolution

ZM[Xo] -2 ZM[X1] -2 ZM -5 Z — 0

» If M admits a coherent presentation X, one extends this sequence to

ZM[X3] %, ZM[Xz] 2 ZM[X1] B IM 57— 0
with the boundary maps given by

8(2 aUU> D aw di(uv) = [u] +T[v], disa(A) = [si(A)] - [6(A)]

ueM

with i = 1,2
> If X is finite, then ZM[X] are finitely generated free ZM-modules
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» Computing Squier's completion for a (finite) convergent presentation is in general
difficult.
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> To compute coherent presentations for the plactic monoids P/(X),
X = A, B, C,, D,, G> depends on the combinatorics of X.

» There is a point of view on these monoids which simplifies the problem of
coherence.
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» consider the two directed labeled graphs

1 2 -2 -1
A,:l—2-= ... 55155,

1 2 — n—1 2 = =
Chil—2—=..n5Hn’5... 5251

> If x y, write f.x = y and €.y = x.
» One defines a graph structure on A% and C; by defining
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cichey
C1C2C3

c/'cles

> We then show that the graph operators ¢;, f; can be defined on the set Crit(Cols),
and the shape of the confluence diagram is preserved by these operators.

» Given a critical branching, apply all the ¢; possible to obtain a critical branching

(crcses)®

~

(c1coc3)

(cfclles)°

» words of this form w? such that e;.w is undefined, are called highest weights
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» This way one completes the following reduction of the problem

(coherent presentation for P/(X)) = (confluence diagram for highest weights)

» Remark: This approach works in any abstract setting given the following data:
» I a directed labeled graph with certain finiteness conditions
> X(I') a convergent presentation for the monoid associated to I'
» the big graph '™ contains highest weights.
» To complete the study of coherence for these monoids in type A and C, it suffices
to compute the confluence diagrams at highest weights.
» Introduce a computational model which

> paramterizes highest weights
> one can compute normal forms in X using them
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» The model for type A is of the form

e d C

and can be used to show that the confluence diagrams of critical branchings for

Cols(A,) are of the form Huly =2
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» The model for type C is of the form

and can be used to show that the confluence diagrams of critical branchings of
Cols(C,) are of the form

t/ u/ v > t/ u// V/ S t// u/// V/
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Thank you very much for your attention!
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