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I. 3-categories and 3-polygraphs

Definition

I A 3-category is a category enriched in 2Cat.
I It is the data

I a category C
I the hom-spaces homC(p, q) are 2-categories

I Three types of compositions ?0, ?1, ?2 to compose 3-cells
I Exchange relations:

(A ?i B) ?j (A′ ?1 B
′) = (A ?j A

′) ?i (B ?j B
′).

I for x an i-cell with i = 0, 1, 2, there is an identity 3-cell 1x : x V x

I informally
I can consider all cells of C as 3-cells
I (flawed) geometric point of view
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I. 3-categories and 3-polygraphs
Cellular extensions

I C a 2-category
I 2-spheres of C are

Sph(C) = {(f , g) pair of 2-cells | s1(f ) = s1(g), t1(f ) = t1(g)}

I Cellular extension of C is a set Γ and a map Γ −→ Sph(C)

I Congruence on C is an equivalence relation ≡ on the 2-spheres satisfying

if f ≡ g then w ?0 (h ?1 f ?1 k) ?0 w
′ ≡ w ?0 (h ?1 g ?1 k) ?0 w

′

I a cellular extension Γ generates a congruence ≡Γ

I Quotient category C/ ≡Γ

I 0-cells and 1-cells preserved
I 2-cells = equivalence classes of 2-cells of C modulo ≡Γ
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I. 3-categories and 3-polygraphs

I A cellular extension Γ is acyclic if

f , g parallel 2-cells, then f ≡Γ g

I trivial cellular extension Γ = Sph(C)

I generally try to find minimal cellular extension
I geometric point of view: homotopy basis = acyclic cellular extension

3-polygraphs
I the data (X2,X3) with X2 a 2-polygraph, and X3 a cellular extension of X>2 . With

source and target maps, it is

X0 ⇔ X ∗1 ⇔ X>2 ⇔ X3

I generalizes notion of 2-polygraphs
I tools to generate free 3-categories and (2,1)-categories
I extended presentation of categories



I. 3-categories and 3-polygraphs
I A cellular extension Γ is acyclic if

f , g parallel 2-cells, then f ≡Γ g

I trivial cellular extension Γ = Sph(C)

I generally try to find minimal cellular extension
I geometric point of view: homotopy basis = acyclic cellular extension

3-polygraphs
I the data (X2,X3) with X2 a 2-polygraph, and X3 a cellular extension of X>2 . With

source and target maps, it is

X0 ⇔ X ∗1 ⇔ X>2 ⇔ X3

I generalizes notion of 2-polygraphs
I tools to generate free 3-categories and (2,1)-categories
I extended presentation of categories



I. 3-categories and 3-polygraphs
I A cellular extension Γ is acyclic if

f , g parallel 2-cells, then f ≡Γ g

I trivial cellular extension Γ = Sph(C)

I generally try to find minimal cellular extension
I geometric point of view: homotopy basis = acyclic cellular extension

3-polygraphs
I the data (X2,X3) with X2 a 2-polygraph, and X3 a cellular extension of X>2 . With

source and target maps, it is

X0 ⇔ X ∗1 ⇔ X>2 ⇔ X3

I generalizes notion of 2-polygraphs
I tools to generate free 3-categories and (2,1)-categories
I extended presentation of categories



I. 3-categories and 3-polygraphs
I A cellular extension Γ is acyclic if

f , g parallel 2-cells, then f ≡Γ g

I trivial cellular extension Γ = Sph(C)

I generally try to find minimal cellular extension

I geometric point of view: homotopy basis = acyclic cellular extension

3-polygraphs
I the data (X2,X3) with X2 a 2-polygraph, and X3 a cellular extension of X>2 . With

source and target maps, it is

X0 ⇔ X ∗1 ⇔ X>2 ⇔ X3

I generalizes notion of 2-polygraphs
I tools to generate free 3-categories and (2,1)-categories
I extended presentation of categories



I. 3-categories and 3-polygraphs
I A cellular extension Γ is acyclic if

f , g parallel 2-cells, then f ≡Γ g

I trivial cellular extension Γ = Sph(C)

I generally try to find minimal cellular extension
I geometric point of view: homotopy basis = acyclic cellular extension

3-polygraphs

I the data (X2,X3) with X2 a 2-polygraph, and X3 a cellular extension of X>2 . With
source and target maps, it is

X0 ⇔ X ∗1 ⇔ X>2 ⇔ X3

I generalizes notion of 2-polygraphs
I tools to generate free 3-categories and (2,1)-categories
I extended presentation of categories



I. 3-categories and 3-polygraphs
I A cellular extension Γ is acyclic if

f , g parallel 2-cells, then f ≡Γ g

I trivial cellular extension Γ = Sph(C)

I generally try to find minimal cellular extension
I geometric point of view: homotopy basis = acyclic cellular extension

3-polygraphs
I the data (X2,X3) with X2 a 2-polygraph, and X3 a cellular extension of X>2 . With

source and target maps, it is

X0 ⇔ X ∗1 ⇔ X>2 ⇔ X3

I generalizes notion of 2-polygraphs
I tools to generate free 3-categories and (2,1)-categories
I extended presentation of categories



I. 3-categories and 3-polygraphs
I A cellular extension Γ is acyclic if

f , g parallel 2-cells, then f ≡Γ g

I trivial cellular extension Γ = Sph(C)

I generally try to find minimal cellular extension
I geometric point of view: homotopy basis = acyclic cellular extension

3-polygraphs
I the data (X2,X3) with X2 a 2-polygraph, and X3 a cellular extension of X>2 . With

source and target maps, it is

X0 ⇔ X ∗1 ⇔ X>2 ⇔ X3

I generalizes notion of 2-polygraphs

I tools to generate free 3-categories and (2,1)-categories
I extended presentation of categories



I. 3-categories and 3-polygraphs
I A cellular extension Γ is acyclic if

f , g parallel 2-cells, then f ≡Γ g

I trivial cellular extension Γ = Sph(C)

I generally try to find minimal cellular extension
I geometric point of view: homotopy basis = acyclic cellular extension

3-polygraphs
I the data (X2,X3) with X2 a 2-polygraph, and X3 a cellular extension of X>2 . With

source and target maps, it is

X0 ⇔ X ∗1 ⇔ X>2 ⇔ X3

I generalizes notion of 2-polygraphs
I tools to generate free 3-categories and (2,1)-categories

I extended presentation of categories



I. 3-categories and 3-polygraphs
I A cellular extension Γ is acyclic if

f , g parallel 2-cells, then f ≡Γ g

I trivial cellular extension Γ = Sph(C)

I generally try to find minimal cellular extension
I geometric point of view: homotopy basis = acyclic cellular extension

3-polygraphs
I the data (X2,X3) with X2 a 2-polygraph, and X3 a cellular extension of X>2 . With

source and target maps, it is

X0 ⇔ X ∗1 ⇔ X>2 ⇔ X3

I generalizes notion of 2-polygraphs
I tools to generate free 3-categories and (2,1)-categories
I extended presentation of categories



I. 3-categories and 3-polygraphs

I free (3,1)-category generated by a 3-polygraph X , denoted X>

I underlying 2-category is X>2
I 3-cells are formal compositions by ?0, ?1, ?2 of 3-cells in X3 t X−3

I Coherent presentation of a 1-category C is a (3,1)-polygraph X so that
I X2 presents C
I X3 an acyclic cellular extension of X>2

I Interested in finite coherent presentations
I A 1-category C is of finite derivation type (FDT) if it admits a finite coherent

presentation
I Thm (SOK): FDT is independent of choice of finite 2-polygraph.
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II. Coherence from convergence
I Idea: Given a convergent polygraph X of C, identify a homotopy basis of X>2

I Crit(X ) = {critical branchings of X}, i.e objects of the form

w ′

w

α

9A

β �%
w ′′

that are minimal.
I Family of generating confluences of X is a cellular extension Γ of X>2 containing

precisely one 3-cell

w ′

�%
w

α

:B

β �$

w ′′′

w ′′

9A

for every element of Crit(X ).
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II. Coherence from convergence

I Squier’s completion of a convergent 2-polygraph X is the (3,1)-polygraph
Sq(X ) = (X , Γ), with Γ generating family of confluences

I Thm (SOK): X a convergent presentation of C. Then Sq(X ) a coherent
presentation for C.

I Sketch of proof: Describe how to pave any given 2-sphere via elements of Γ.
I Particularly useful in the specific case of presentations of monoids (i.e. 1-categories

with a single 0-cell)
I Question: How to constructively choose confluence diagrams for the critical

branchings?



II. Coherence from convergence

I Squier’s completion of a convergent 2-polygraph X is the (3,1)-polygraph
Sq(X ) = (X , Γ), with Γ generating family of confluences

I Thm (SOK): X a convergent presentation of C. Then Sq(X ) a coherent
presentation for C.

I Sketch of proof: Describe how to pave any given 2-sphere via elements of Γ.
I Particularly useful in the specific case of presentations of monoids (i.e. 1-categories

with a single 0-cell)
I Question: How to constructively choose confluence diagrams for the critical

branchings?



II. Coherence from convergence

I Squier’s completion of a convergent 2-polygraph X is the (3,1)-polygraph
Sq(X ) = (X , Γ), with Γ generating family of confluences

I Thm (SOK): X a convergent presentation of C. Then Sq(X ) a coherent
presentation for C.

I Sketch of proof: Describe how to pave any given 2-sphere via elements of Γ.

I Particularly useful in the specific case of presentations of monoids (i.e. 1-categories
with a single 0-cell)

I Question: How to constructively choose confluence diagrams for the critical
branchings?



II. Coherence from convergence

I Squier’s completion of a convergent 2-polygraph X is the (3,1)-polygraph
Sq(X ) = (X , Γ), with Γ generating family of confluences

I Thm (SOK): X a convergent presentation of C. Then Sq(X ) a coherent
presentation for C.

I Sketch of proof: Describe how to pave any given 2-sphere via elements of Γ.
I Particularly useful in the specific case of presentations of monoids (i.e. 1-categories

with a single 0-cell)

I Question: How to constructively choose confluence diagrams for the critical
branchings?



II. Coherence from convergence

I Squier’s completion of a convergent 2-polygraph X is the (3,1)-polygraph
Sq(X ) = (X , Γ), with Γ generating family of confluences

I Thm (SOK): X a convergent presentation of C. Then Sq(X ) a coherent
presentation for C.

I Sketch of proof: Describe how to pave any given 2-sphere via elements of Γ.
I Particularly useful in the specific case of presentations of monoids (i.e. 1-categories

with a single 0-cell)
I Question: How to constructively choose confluence diagrams for the critical

branchings?



II. Coherence from convergence
I For monoids, there exists a constructive way of choosing a generating family of

confluences

I Consider M a monoid presented by a 2-polygraph X with one 0-cell ∗
I π : X ∗1 −→ M the canonical projection, and s : M −→ X ∗1 a section, i.e.

π(s(u)) = u.

I denote s(u) = û
I 1̂ = 1

I a normalization strategy for X is a map σ : X ∗1 −→ X>2 with

σ(u) = (u =⇒ û)

I σ is called left-normalizing (resp. right-normalizing) if

σuv = (σu ?0 v) ?1 σûv , (resp.σuv = (u ?0 σv ) ?1 σuv̂ )
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σuv = (σu ?0 v) ?1 σûv , (resp.σuv = (u ?0 σv ) ?1 σuv̂ )



II. Coherence from convergence

I Any 2-polygraph admits a left (resp. right) normalization strategy.
I Let X be a convergent polygraph.
I For u ∈ X ∗1 define an order � on

{f : u =⇒ v | f rewriting step}

by setting
t1α1v1 � t2α2v2

if |t1| ≤ |t2|.
I Denote by λu (resp. ρu) the minimal (resp. maximal) elements of this order.
I Leftmost normalization strategy

σu := λu ?1 σ(t(λu))

I Rightmost normalization strategy

σu = ρu ?1 σt(ρu)

I We can choose a family of generating confluences via the leftmost and rightmost
normalization strategies.
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II. Coherence from convergence
Example

I Consider the free abelian monoid on three letters M3

I a presentation for M3 is the 2-polygraph

X = 〈 1, 2, 3 | 21 =⇒ 12, 31 =⇒ 13, 32 =⇒ 23 〉

I X is terminating (lexicographic order)
I X is confluent, thus convergent with normal forms

1a2b3c

for a, b, c ∈ N
I X has one critical branching
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II. Coherence from convergence

I use the leftmost normalization strategy to obtain a confluence diagram

312 +3 132

�&
321

8@

�&

123

231 +3 213

8@

I Thus (X , {A}) with A the 3-cell above is a coherent presentation for M3.
I Remark: Normalization strategies provide a way for specifying a family of

generating confluences. The shape of such confluence diagrams depends on the
intrinsic nature of the monoid and its combinatorics.
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III. Homology via Squier
Homology of monoids

I Let M be a monoid.
I A resolution of the trivial ZM-module Z is a long exact sequence

· · ·Cn+1
dn+1−→ Cn

dn−→ Cn−1 −→ · · ·C1
d1−→ C0

ε−→ Z −→ 0

with Ci being ZM-modules.
I if Ci are free, we call it a free resolution
I Given a free resolution of Z, we associate the following chain complex

· · ·Z ⊗ZM Cn+1
d̃n+1−→ ⊗ZMCn

d̃n−→ ⊗ZMCn−1 −→ · · ·C1
d̃1−→ ⊗ZMC0

I Homology of M with integral coefficients is defined by setting

Hn(M,Z) = ker(d̃n)/im(d̃n+1),

and we call it the n-th homology group of M.
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III. Homology via Squier
Lower dimensional homology via Squier

I Presentations of monoids provide a way of studying the homology of a monoid.
I In particular if X is a convergent presentation of M we obtain a partial free

resolution
ZM[X2]

d2−→ ZM[X1]
d1−→ ZM ε−→ Z −→ 0

I If M admits a coherent presentation X , one extends this sequence to

ZM[X3]
d3−→ ZM[X2]

d2−→ ZM[X1]
d1−→ ZM ε−→ Z −→ 0

with the boundary maps given by

ε

(∑
u∈M

auu

)
=
∑

au, d1(uv) = [u] + u[v ], di+1(A) = [si (A)]− [ti (A)]

with i = 1, 2
I If X is finite, then ZM[Xi ] are finitely generated free ZM-modules
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IV. Coherent presentations of plactic monoids

I Computing Squier’s completion for a (finite) convergent presentation is in general
difficult.

I To compute coherent presentations for the plactic monoids Pl(X ),
X = An,Bn,Cn,Dn,G2 depends on the combinatorics of X .

I There is a point of view on these monoids which simplifies the problem of
coherence.

Crystal approach (types A and C)
I consider the two directed labeled graphs

An : 1 1−→ 2 2−→ · · · n−2−→ n − 1 n−1−→ n

Cn : 1 1−→ 2 2−→ · · · n n−→ n
n−1−→ · · · 2−→ 2 1−→ 1

I If x i−→ y , write fi .x = y and ei .y = x .
I One defines a graph structure on A∗n and C∗n by defining
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ei .(uv) =

{
(ei .u)v if ϕi (u) ≥ εi (v),
u(ei .v) if ϕi (u) < εi (v),

fi .(uv) =

{
(fi .u)v if ϕi (u) > εi (v),
u(fi .v) if ϕi (u) ≤ εi (v),

I One then defines a monoid associated to An and Cn via the congruence

w ∼ w1 if B(w) ∼= B(w1).

I We have that the monoids obtained this way are in fact Pl(An) and Pl(Cn).
I Recall that these monoids admit finite convergent presentations, called the column

presentations.
Cols = 〈columns c | c1c2 =⇒ d1d2〉

with critical branchings of the form
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I We then show that the graph operators ei , fi can be defined on the set Crit(Cols),
and the shape of the confluence diagram is preserved by these operators.

I Given a critical branching, apply all the ei possible to obtain a critical branching
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IV. Coherent presentations of plactic monoids

I This way one completes the following reduction of the problem

(coherent presentation for Pl(X )) ≡ (confluence diagram for highest weights)

I Remark: This approach works in any abstract setting given the following data:
I Γ a directed labeled graph with certain finiteness conditions
I X (Γ) a convergent presentation for the monoid associated to Γ
I the big graph Γ∗ contains highest weights.

I To complete the study of coherence for these monoids in type A and C , it suffices
to compute the confluence diagrams at highest weights.

I Introduce a computational model which
I paramterizes highest weights
I one can compute normal forms in X using them
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I The model for type C is of the form
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Thank you very much for your attention!
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