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Overview

• For any monoid M, its centre Z(M) is a commutative submonoid;
• For any semiring R, its centre Z(R) is a commutative subsemiring.
• For any group G, its centre Z(G) is a commutative subgroup (aka

abelian subgroup);

• What about monads?

Context:

• a symmetric monoidal category (C, I,⊗),
• a strong monad (T , η, µ, τ ).

We wonder:

• Is there a commutative submonad of T which is its centre? When
does it exist?

• Is there an appropriate computational interpretation?
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Background



Safe Net: functors, monoidal category

Category C: some objects Obj(C), and morphisms between them. Given
two objects A,B; C(A,B) is the set of morphisms A→ B.

Morphisms can be composed: f : A→ B and g : B→ C give rise to
g ◦ f : A→ C.

A functor F : C→ C is a function on objects and on morphisms. Given
f : A→ B, F(f) is a morphism F(A)→ F(B). Functors preserve
composition: F(g ◦ f) = F(g) ◦ F(f).

We will write Ff : FA→ FB.

Monoidal structure: seen as a tensor product.

Objects can be tensored: A⊗ B.

Morphisms can be tensored f⊗ g.

⊗ is a (bi)functor.
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An easy way out?

A monad is a monoid in the category of endofunctors, wrt composition.

But it is not a monoid as a math undergrade would understand it.

It is a monoid object M in CC , with a unit η : I→ M and a
multiplication µ : M ◦M→ M. (with coherence conditions)

What is the centre of a monoid-object?
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The Strength of a Monad

• Given a monoid M, its centre is defined as

Z(M)
def
= {x ∈ M | ∀y ∈ M. x · y = y · x}.

• Notice there is an implicit swap in the arguments.
• But, the definition of a monad is independent of any monoidal

structure on the base category.
• Unclear how to define a suitable notion of centre for such monads.

• Instead, we introduce the centre for strong monads acting on
symmetric monoidal categories.

• The monadic strength is a natural transformation
τX,Y : X⊗ T Y→ T (X⊗ Y) that satisfies some coherence conditions
w.r.t. monoidal structure.

• The monadic left strength is a natural transformation
τ ′X,Y : T X⊗ Y→ T (X⊗ Y) that may be defined via τ and the
monoidal symmetry.
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Commutative Monads

Definition (Commutative Monad)

A strong monad T is said to be commutative if the following diagram:

T X⊗ T Y T (T X⊗ Y) T 2(X⊗ Y)

T (X⊗ T Y) T 2(X⊗ Y) T (X⊗ Y)

τT X,Y T τ ′X,Y

µX⊗Yτ ′X,T Y

T τX,Y µX⊗Y

commutes for every choice of objects X and Y.
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The Centre of a Monad on Set



The first example

Given a monoid (M, e,m), the writer monad: (M×−) : Set→ Set has
the following monad structure:

• ηX : X→ M× X :: x 7→ (e, x);
• µX : M× (M× X)→ M× X :: (z, (z′, x)) 7→ (m(z, z′), x),
• τX,Y : X× (M× Y)→ M× (X× Y) :: (x, (z, y)) 7→ (z, (x, y)).

What should be the centre? What about Z(M)×−?
Indeed, it is a commutative submonad of (M×−).
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Commutative Monads in Set

T : Set→ Set is said to be commutative if the following diagram:

T X× T Y T (T X× Y) T 2(X× Y)

T (X× T Y) T 2(X× Y) T (X× Y)

τT X,Y T τ ′X,Y

µX×Yτ ′X,T Y

T τX,Y µX×Y

commutes for every choice of sets X and Y.

How would you define the centre Z of T ?
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Central Subset

The trick is to consider all the monadic elements of T X that make the
previous diagram commute.

Definition (Centre)

Given a set X, the centre of T at X, written ZX, is defined to be the set

ZX def
= {t ∈ T X | ∀Y ∈ Ob(Set).∀s ∈ T Y.

µ(T τ ′(τ(t, s))) = µ(T τ(τ ′(t, s)))}.

We write ιX : ZX ⊆ T X for the indicated subset inclusion.
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The Centre

• Lemma: The assignment Z(−) extends to a functor Z : Set→ Set
when we define

Zf def
= T f|ZX : ZX→ ZY,

for any function f : X→ Y.
• Lemma: For any two sets X and Y, the monadic unit ηX : X→ T X,

the monadic multiplication µX : T 2X→ T X, and the monadic
strength τX,Y : X× T Y→ T (X× Y) (co)restrict respectively to
functions ηZX : X→ ZX, µZ

X : Z2X→ ZX and
τZX,Y : X×ZY→ Z(X× Y).

• Theorem: The assignment Z(−) extends to a commutative
submonad (Z, ηZ , µZ , τZ) of T with ιX : ZX ⊆ T X the submonad
morphism. Furthermore, there exists a canonical1 isomorphism
SetZ ∼= Z(SetT ).

1Details later.
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Examples

• Continuation monad: T = [[−, S], S] : Set→ Set.

• ZX = ηX(X) ∼= X,
• The image of the monadic unit is always in the centre.
• The centre is naturally isomorphic to the identity monad; therefore

the centre is trivial.

• If T is commutative, its centre is itself.
• The centre of (M×−) is indeed (Z(M)×−).
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Link with Lawvere theories

• In a Lawvere theory T, we say that f : An → An′ and g : Am → Am′

commute if and only if fm′ ◦ gn (also written f ⋆ g) and gn′ ◦ fm (also
written g ⋆ f) are equal, up to isomorphism.

• If S is a subcategory of T, the commutant of S in T is a subcategory
of T whose morphisms commute with the morphisms of S. This
commutant is written S⊥, and is also a Lawvere subtheory of T.

• Considering this, T⊥ is seen as the centre of the Lawvere theory T.
• From T arises a finitery strong monad T on Set, and its centre Z is

the monad of T⊥.

Probably something to say about operads (with promonads?), but I have
not figured this out yet.
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Central Submonads in
Symmetric Monoidal Categories



Central cones

Definition (Central Cone)

A central cone of T at X is given by a pair (Z, ι), an object Z and a
morphism ι : Z→ T X, such that the diagram:

Z⊗ T Y T X⊗ T Y T (X⊗ T Y)

T 2(X⊗ Y)

T (X⊗ Y)

T X⊗ T Y

T (T X⊗ Y) T 2(X⊗ Y)

ι⊗ T Y τ ′X,T Y

T τX,Y

µX⊗Y

ι⊗ T Y

τT X,Y

T τ ′X,Y µX⊗Y

commutes.
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Central Submonads

Definition (Central Submonad)

Given a strong monad (S, ηS , µS , τS) which is a submonad of T with
monad monomorphism ι, we say that S is a central submonad of T if
for any object X, (SX, ιX) is a central cone for T at X. Besides, this
last condition implies that S is commutative.

• At first we thought that: there always is at least one central
submonad for T , but it is wrong.

• They form a category with strong monad morphisms. If the category
has a terminal object, the latter is the centre of T .
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Centralisable Monads in
Symmetric Monoidal Categories



Centralisable Monad

If (Z, ι) and (Z′, ι′) are two central cones of T at X, then a morphism of
central cones φ : (Z′, ι′)→ (Z, ι) is a morphism φ : Z′ → Z, such that
ι ◦ φ = ι′.

A terminal central cone is a terminal object in the category of central
cones. Its morphism component always is a monomorphism.
Definition
We say that the monad T is centralisable if for any object X, a terminal
central cone of T at X exists. We write (ZX, ιX) for the terminal
central cone of T at X.

Theorem
The assignment Z(−) extends to a commutative submonad
(Z, ηZ , µZ , τZ) of T with ι : Z ⇒ T the submonad monomorphism.

The Kleisli category CT of a monad T has the same objects as C and
morphisms A→T B are the ones A→ T B. Note that a submonad
morphism induces a canonical embedding I : CZ → CT .
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Kleisli Categories and
Premonoidal Categories



Premonoidal category

• If C is symmetric monoidal and T : C→ C a strong monad;
• then CT does not necessarily have a monoidal structure,

• CT has a premonoidal structure [Power and Robinson, 1997].
• there are two families of functors (−⊗l X′) and (X⊗r −) on CT .

Definition (Central morphism [Power and Robinson, 1997])

A morphism f : X→ Y in CT is central if for any morphism f′ : X′ → Y′

in CT , the following diagram:

X⊗ X′

X⊗ Y′

Y⊗ X′

Y⊗ Y′

f⊗l X′

X⊗r f′ Y⊗r f′

f⊗l Y′

commutes in CT .

Central cones and central morphisms are actually equivalent notions!
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Premonoidal Centre

• Z(CT ): the wide subcategory of CT with central morphisms.
• It is symmetric monoidal [Power and Robinson, 1997].

Proposition
If the strong monad T is centralisable, then the canonical embedding
I : CZ → CT corestricts to an isomorphism of categories
Î : CZ → Z(CT ).

This is why we call Z the centre of T .
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Premonoidal adjunction



Kleisli adjunction

• In the Kleisli adjunction between C and CT , the left adjoint,
J : C→ CT always corestricts to Ĵ : C→ Z(CT ).

Proposition
If the strong monad T is centralisable, then Ĵ is also a left adjoint and
the adjunction induces the centre Z.
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Characterisation



The Main Theorem

Theorem (Centralisability)

Let C be a symmetric monoidal category and T a strong monad on it.
The following are equivalent:

1. For any object X of C, T admits a terminal central cone at X;
2. There exists a commutative submonad Z of T such that the

canonical embedding functor I : CZ → CT corestricts to an
isomorphism of categories CZ ∼= Z(CT );

3. The corestriction of the Kleisli left adjoint J : C→ CT to the
premonoidal centre Ĵ : C→ Z(CT ) also is a left adjoint.
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Some Centralisable Monads and a non Centralisable one

• Using the main theorem, it follows every strong monad on many
categories of interest (e.g., Set,DCPO,Meas,Top,Hilb,Vect) is
centralisable.

• If C is a symmetric monoidal closed category that is total, then
every strong monad on it is centralisable.

• If T is a commutative monad, then T is centralisable and its centre
coincides with itself.

Is every strong monad centralisable?

No!
Example built with a full subcategory C of Set where not all subsets of
T X are objects of C.
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More monads with non-trivial centres

Example
The valuation monad V : DCPO→ DCPO is strong, but its
commutativity is an open problem [Jones, 1990]. The central submonad
of V is precisely the ”central valuations monad” described in
[Jia et al., 2021].
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Computational interpretation



A meta language

Type theory: a term judgement is given by: a context Γ of variables in
the term, a term M define by a grammar (soon below), a type. A
judgement is written: Γ ` M : A.

(Types) A,B ::= 1 | A→ B | A× B | SA | T A
(Terms) M,N ::= x | ∗ | λxA.M | MN | 〈M,N〉 | πiM

| retS M | ιM | retT M | doS x← M; N | doT x← M; N

Γ, x : A ` x : A
Γ, x : A ` M : B

Γ ` λxA.M : A→ B
Γ ` M : A→ B Γ ` N : A

Γ ` MN : B

Γ ` M : A
Γ ` retS M : SA

Γ ` M : SA Γ, x : A ` N : SB
Γ ` doS x← M; N : SB

Γ ` M : SA
Γ ` ιM : T A

Γ ` M : T A Γ, x : A ` N : T B
Γ ` doT x← M; N : T B
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the term, a term M define by a grammar (soon below), a type. A
judgement is written: Γ ` M : A.

(Types) A,B ::= 1 | A→ B | A× B | SA | T A
(Terms) M,N ::= x | ∗ | λxA.M | MN | 〈M,N〉 | πiM

| retS M | ιM | retT M | doS x← M; N | doT x← M; N

Γ, x : A ` x : A
Γ, x : A ` M : B

Γ ` λxA.M : A→ B
Γ ` M : A→ B Γ ` N : A

Γ ` MN : B

Γ ` M : A
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Γ ` M : SA Γ, x : A ` N : SB
Γ ` doS x← M; N : SB
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Γ ` doT x← M; N : T B
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Semantics

Two types of semantics:

• One is syntactic: equational theory,
• The other is categorical: denotational semantics.

The calculus is given by a set of rules such that:

Γ ` M : A
Γ ` M = M : A (refl) Γ ` N = M : A

Γ ` M = N : A (symm)

Γ, x : A ` M : B Γ ` N : A
Γ ` (λxA.M)N = M[N/x] : B

(λ.β)

Γ ` M : SA Γ ` N : T B Γ, x : A, y : B ` P : T C
Γ ` doT x← ιM; doT y← N; P = doT y← N; doT x← ιM; P : T C (centr)

A theory is this calculus with additional constants and equational rules.
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Denotational semantics

We write an interpretation J−K.
Types A are interpretated as objects JAK in a category C.

Term judgements Γ ` M : A as morphisms JΓ ` M : AK : JΓK→ JAK.
An interpretation of a theory is sound if:

Γ ` M = N : A implies JΓ ` M : AK = JΓ ` N : AK.
An interpretation is complete if:

Γ ` M = N : A iff JΓ ` M : AK = JΓ ` N : AK.
If the interpretation of a theory is sound and complete, it is safe to call C
a model of the theory. The types SA and T A give rise to monads in C
and better: S is a central submonad of T !!
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Equivalence

Theories form a 2-category Th. Models form a 2-category Mod.

and...

Theorem
Th and Mod are 2-equivalent.
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Computational use case for the centre of a monad

If at least one of op1 or op2 is central, then the two programs are
contextually equivalent!
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Ongoing and Future Work



• Notion of Commutant for (pro)monads in general;
• Link with Garner’s results on commutativity

[Garner and Franco, 2016].
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Thank you!
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