Central Submonads and Notions of Computation

Titouan Carette, Louis Lemonnier, Vladimir Zamdzhiev

Laboratoire Méthodes Formelles

April, 27th 2023

- For any monoid *M*, its centre *Z*(*M*) is a commutative submonoid;
- For any semiring R, its centre Z(R) is a commutative subsemiring.
- For any group G, its centre Z(G) is a commutative subgroup (aka abelian subgroup);

- For any monoid *M*, its centre *Z*(*M*) is a commutative submonoid;
- For any semiring R, its centre Z(R) is a commutative subsemiring.
- For any group G, its centre Z(G) is a commutative subgroup (aka abelian subgroup);
- What about monads?

- For any monoid *M*, its centre *Z*(*M*) is a commutative submonoid;
- For any semiring R, its centre Z(R) is a commutative subsemiring.
- For any group G, its centre Z(G) is a commutative subgroup (aka abelian subgroup);
- What about monads?

Context:

- a symmetric monoidal category (\mathbf{C}, I, \otimes) ,
- a strong monad $(\mathcal{T}, \eta, \mu, \tau)$.

- For any monoid *M*, its centre *Z*(*M*) is a commutative submonoid;
- For any semiring R, its centre Z(R) is a commutative subsemiring.
- For any group G, its centre Z(G) is a commutative subgroup (aka abelian subgroup);
- What about monads?

Context:

- a symmetric monoidal category $(\mathbf{C}, \mathbf{I}, \otimes)$,
- a strong monad $(\mathcal{T}, \eta, \mu, \tau)$.

We wonder:

- Is there a commutative submonad of ${\mathcal T}$ which is its centre? When does it exist?
- Is there an appropriate computational interpretation?

Background

Category **C**: some objects $Obj(\mathbf{C})$, and morphisms between them. Given two objects A, B; $\mathbf{C}(A, B)$ is the *set* of morphisms $A \rightarrow B$.

Morphisms can be composed: $f: A \to B$ and $g: B \to C$ give rise to $g \circ f: A \to C$.

A functor $F : \mathbf{C} \to \mathbf{C}$ is a function on objects and on morphisms. Given $f : A \to B$, F(f) is a morphism $F(A) \to F(B)$. Functors preserve composition: $F(g \circ f) = F(g) \circ F(f)$.

We will write $Ff: FA \rightarrow FB$.

Monoidal structure: seen as a *tensor* product.

Objects can be tensored: $A \otimes B$.

Morphisms can be tensored $f \otimes g$.

 \otimes is a (bi)functor.

A monad is a monoid in the category of endofunctors, wrt composition. But it is not a monoid as a math undergrade would understand it. It is a monoid *object* M in $\mathbb{C}^{\mathbb{C}}$, with a unit $\eta : I \to M$ and a multiplication $\mu : M \circ M \to M$. (with coherence conditions) What is the centre of a monoid-object?

The Strength of a Monad

• Given a monoid *M*, its centre is defined as

$$Z(M) \stackrel{\text{def}}{=} \{ x \in M \mid \forall y \in M. \ x \cdot y = y \cdot x \}.$$

- Notice there is an implicit *swap* in the arguments.
- *But,* the definition of a monad is independent of any monoidal structure on the base category.
- Unclear how to define a suitable notion of centre for such monads.

The Strength of a Monad

• Given a monoid *M*, its centre is defined as

$$Z(M) \stackrel{\text{def}}{=} \{ x \in M \mid \forall y \in M. \ x \cdot y = y \cdot x \}.$$

- Notice there is an implicit *swap* in the arguments.
- But, the definition of a monad is independent of any monoidal structure on the base category.
- Unclear how to define a suitable notion of centre for such monads.
- Instead, we introduce the centre for strong monads acting on symmetric monoidal categories.
- The monadic strength is a natural transformation

 *τ*_{X,Y}: X ⊗ *T*Y → *T*(X ⊗ Y) that satisfies some coherence conditions
 w.r.t. monoidal structure.
- The monadic left strength is a natural transformation
 τ'_{X,Y}: *TX* ⊗ *Y* → *T*(*X* ⊗ *Y*) that may be defined via *τ* and the
 monoidal symmetry.

Definition (Commutative Monad)

A strong monad \mathcal{T} is said to be *commutative* if the following diagram:

$$\begin{array}{c|c} \mathcal{T}X \otimes \mathcal{T}Y & \xrightarrow{\tau_{\mathcal{T}X,Y}} \mathcal{T}(\mathcal{T}X \otimes Y) & \xrightarrow{\mathcal{T}\tau'_{X,Y}} \mathcal{T}^{2}(X \otimes Y) \\ \end{array} \\ \hline \\ \tau'_{X,\mathcal{T}Y} & \downarrow & \downarrow \\ \mathcal{T}(X \otimes \mathcal{T}Y) & \xrightarrow{\mathcal{T}\tau_{X,Y}} \mathcal{T}^{2}(X \otimes Y) & \xrightarrow{\mu_{X \otimes Y}} \mathcal{T}(X \otimes Y) \end{array}$$

commutes for every choice of objects X and Y.

The Centre of a Monad on Set

Given a monoid (M, e, m), the writer monad: $(M \times -)$: **Set** \rightarrow **Set** has the following monad structure:

•
$$\eta_X : X \to M \times X :: x \mapsto (e, x);$$

•
$$\mu_X : M \times (M \times X) \to M \times X :: (z, (z', x)) \mapsto (m(z, z'), x),$$

• $\tau_{X,Y}: X \times (M \times Y) \to M \times (X \times Y) ::: (x, (z, y)) \mapsto (z, (x, y)).$

What should be the centre? What about $Z(M) \times -?$ Indeed, it is a commutative submonad of $(M \times -)$. $\mathcal{T}:\textbf{Set}\rightarrow\textbf{Set}$ is said to be commutative if the following diagram:

$$\begin{array}{c|c} \mathcal{T}X \times \mathcal{T}Y & \xrightarrow{\tau_{\mathcal{T}X,Y}} & \mathcal{T}(\mathcal{T}X \times Y) & \xrightarrow{\mathcal{T}\tau'_{X,Y}} & \mathcal{T}^{2}(X \times Y) \\ \\ \tau'_{X,\mathcal{T}Y} & & & & & \\ \end{array} \\ \mathcal{T}(X \times \mathcal{T}Y) & \xrightarrow{\mathcal{T}\tau_{X,Y}} & \mathcal{T}^{2}(X \times Y) & \xrightarrow{\mu_{X \times Y}} & \mathcal{T}(X \times Y) \end{array}$$

commutes for every choice of sets X and Y.

 $\mathcal{T}:\textbf{Set}\rightarrow\textbf{Set}$ is said to be *commutative* if the following diagram:

$$\begin{array}{c|c} \mathcal{T}X \times \mathcal{T}Y & \xrightarrow{\tau_{\mathcal{T}X,Y}} \mathcal{T}(\mathcal{T}X \times Y) & \xrightarrow{\mathcal{T}\tau'_{X,Y}} \mathcal{T}^{2}(X \times Y) \\ \end{array} \\ \tau'_{X,\mathcal{T}Y} & \downarrow & \downarrow \\ \mathcal{T}(X \times \mathcal{T}Y) & \xrightarrow{\mathcal{T}\tau_{X,Y}} \mathcal{T}^{2}(X \times Y) & \xrightarrow{\mu_{X \times Y}} \mathcal{T}(X \times Y) \end{array}$$

commutes for every choice of sets X and Y. How would you define the <u>centre</u> Z of T? The trick is to consider all the monadic elements of $\mathcal{T}X$ that make the previous diagram commute.

Definition (Centre)

Given a set X, the *centre* of \mathcal{T} at X, written $\mathcal{Z}X$, is defined to be the set $\mathcal{Z}X \stackrel{\text{def}}{=} \{t \in \mathcal{T}X \mid \forall Y \in \text{Ob}(\mathbf{Set}) . \forall s \in \mathcal{T}Y.$ $\mu(\mathcal{T}\tau'(\tau(t,s))) = \mu(\mathcal{T}\tau(\tau'(t,s)))\}.$

We write $\iota_X : \mathcal{Z}X \subseteq \mathcal{T}X$ for the indicated subset inclusion.

The Centre

- Lemma: The assignment $\mathcal{Z}(-)$ extends to a functor $\mathcal{Z}:$ Set \to Set when we define

$$\mathcal{Z}f \stackrel{\mathrm{def}}{=} \mathcal{T}f|_{\mathcal{Z}X} : \mathcal{Z}X \to \mathcal{Z}Y,$$

for any function $f: X \to Y$.

- Lemma: For any two sets X and Y, the monadic unit η_X : X → TX, the monadic multiplication μ_X : T²X → TX, and the monadic strength τ_{X,Y} : X × TY → T(X × Y) (co)restrict respectively to functions η_X^Z : X → ZX, μ_X^Z : Z²X → ZX and τ_{X,Y}^Z : X × ZY → Z(X × Y).
- Theorem: The assignment Z(-) extends to a *commutative* submonad (Z, η^Z, μ^Z, τ^Z) of T with ι_X : ZX ⊆ TX the submonad morphism. Furthermore, there exists a canonical¹ isomorphism Set_Z ≅ Z(Set_T).

¹Details later.

• Continuation monad: $\mathcal{T} = [[-, S], S] : \mathbf{Set} \to \mathbf{Set}$.

- Continuation monad: $\mathcal{T} = [[-, S], S] : \mathbf{Set} \to \mathbf{Set}.$
 - $\mathcal{Z}X = \eta_X(X) \cong X$,

- Continuation monad: $\mathcal{T} = [[-, S], S] : \mathbf{Set} \to \mathbf{Set}$.
 - $\mathcal{Z}X = \eta_X(X) \cong X$,
 - The image of the monadic unit is always in the centre.

- Continuation monad: $\mathcal{T} = [[-, S], S] : \mathbf{Set} \to \mathbf{Set}.$
 - $\mathcal{Z}X = \eta_X(X) \cong X$,
 - The image of the monadic unit is always in the centre.
 - The centre is naturally isomorphic to the *identity monad*; therefore the centre is trivial.

- Continuation monad: $\mathcal{T} = [[-, S], S] : \mathbf{Set} \to \mathbf{Set}.$
 - $\mathcal{Z}X = \eta_X(X) \cong X$,
 - The image of the monadic unit is always in the centre.
 - The centre is naturally isomorphic to the *identity monad*; therefore the centre is trivial.
- If ${\mathcal T}$ is commutative, its centre is itself.

- Continuation monad: $\mathcal{T} = [[-, S], S] : \mathbf{Set} \to \mathbf{Set}.$
 - $\mathcal{Z}X = \eta_X(X) \cong X$,
 - The image of the monadic unit is always in the centre.
 - The centre is naturally isomorphic to the *identity monad*; therefore the centre is trivial.
- If \mathcal{T} is commutative, its centre is itself.
- The centre of $(M \times -)$ is indeed $(Z(M) \times -)$.

Link with Lawvere theories

- In a Lawvere theory **T**, we say that f: Aⁿ → A^{n'} and g: A^m → A^{m'} commute if and only if f^{m'} ∘ gⁿ (also written f ★ g) and g^{n'} ∘ f^m (also written g ★ f) are equal, up to isomorphism.
- If S is a subcategory of T, the commutant of S in T is a subcategory of T whose morphisms commute with the morphisms of S. This commutant is written S[⊥], and is also a Lawvere subtheory of T.
- Considering this, T[⊥] is seen as the *centre* of the Lawvere theory T.
- From T arises a finitery strong monad T on Set, and its centre Z is the monad of T[⊥].

Link with Lawvere theories

- In a Lawvere theory **T**, we say that f: Aⁿ → A^{n'} and g: A^m → A^{m'} commute if and only if f^{m'} ∘ gⁿ (also written f ★ g) and g^{n'} ∘ f^m (also written g ★ f) are equal, up to isomorphism.
- If S is a subcategory of T, the commutant of S in T is a subcategory of T whose morphisms commute with the morphisms of S. This commutant is written S[⊥], and is also a Lawvere subtheory of T.
- Considering this, \mathbf{T}^{\perp} is seen as the *centre* of the Lawvere theory \mathbf{T} .
- From T arises a finitery strong monad T on Set, and its centre Z is the monad of T[⊥].

Probably something to say about operads (with promonads?), but I have not figured this out yet.

Central Submonads in Symmetric Monoidal Categories

Definition (Central Cone)

A central cone of \mathcal{T} at X is given by a pair (Z, ι) , an object Z and a morphism $\iota : Z \to \mathcal{T}X$, such that the diagram:

Definition (Central Submonad)

Given a strong monad $(S, \eta^S, \mu^S, \tau^S)$ which is a submonad of \mathcal{T} with monad monomorphism ι , we say that S is a central submonad of \mathcal{T} if for any object X, (SX, ι_X) is a central cone for \mathcal{T} at X. Besides, this last condition implies that S is commutative.

Definition (Central Submonad)

Given a strong monad $(S, \eta^S, \mu^S, \tau^S)$ which is a submonad of \mathcal{T} with monad monomorphism ι , we say that S is a central submonad of \mathcal{T} if for any object X, (SX, ι_X) is a central cone for \mathcal{T} at X. Besides, this last condition implies that S is commutative.

 At first we thought that: there always is at least one central submonad for *T*, but it is wrong.

Definition (Central Submonad)

Given a strong monad $(S, \eta^S, \mu^S, \tau^S)$ which is a submonad of \mathcal{T} with monad monomorphism ι , we say that S is a central submonad of \mathcal{T} if for any object X, (SX, ι_X) is a central cone for \mathcal{T} at X. Besides, this last condition implies that S is commutative.

- At first we thought that: there always is at least one central submonad for *T*, but it is wrong.
- They form a category with strong monad morphisms. If the category has a terminal object, the latter is the centre of T.

Centralisable Monads in Symmetric Monoidal Categories

If (Z, ι) and (Z', ι') are two central cones of \mathcal{T} at X, then a morphism of central cones $\varphi : (Z', \iota') \to (Z, \iota)$ is a morphism $\varphi : Z' \to Z$, such that $\iota \circ \varphi = \iota'$.

If (Z, ι) and (Z', ι') are two central cones of \mathcal{T} at X, then a morphism of central cones $\varphi : (Z', \iota') \to (Z, \iota)$ is a morphism $\varphi : Z' \to Z$, such that $\iota \circ \varphi = \iota'$.

A *terminal* central cone is a terminal object in the category of central cones. Its morphism component always is a monomorphism.

If (Z, ι) and (Z', ι') are two central cones of \mathcal{T} at X, then a morphism of central cones $\varphi : (Z', \iota') \to (Z, \iota)$ is a morphism $\varphi : Z' \to Z$, such that $\iota \circ \varphi = \iota'$.

A *terminal* central cone is a terminal object in the category of central cones. Its morphism component always is a monomorphism. **Definition**

We say that the monad \mathcal{T} is *centralisable* if for any object X, a terminal central cone of \mathcal{T} at X exists. We write $(\mathcal{Z}X, \iota_X)$ for the terminal central cone of \mathcal{T} at X.

If (Z, ι) and (Z', ι') are two central cones of \mathcal{T} at X, then a morphism of central cones $\varphi : (Z', \iota') \to (Z, \iota)$ is a morphism $\varphi : Z' \to Z$, such that $\iota \circ \varphi = \iota'$.

A *terminal* central cone is a terminal object in the category of central cones. Its morphism component always is a monomorphism. **Definition**

We say that the monad \mathcal{T} is *centralisable* if for any object X, a terminal central cone of \mathcal{T} at X exists. We write $(\mathcal{Z}X, \iota_X)$ for the terminal central cone of \mathcal{T} at X.

Theorem

The assignment $\mathcal{Z}(-)$ extends to a commutative submonad $(\mathcal{Z}, \eta^{\mathcal{Z}}, \mu^{\mathcal{Z}}, \tau^{\mathcal{Z}})$ of \mathcal{T} with $\iota : \mathcal{Z} \Rightarrow \mathcal{T}$ the submonad monomorphism.

The Kleisli category $\mathbf{C}_{\mathcal{T}}$ of a monad \mathcal{T} has the same objects as \mathbf{C} and morphisms $A \to_{\mathcal{T}} B$ are the ones $A \to \mathcal{T} B$. Note that a submonad morphism induces a canonical embedding $\mathcal{I} : \mathbf{C}_{\mathcal{Z}} \to \mathbf{C}_{\mathcal{T}}$.

Kleisli Categories and Premonoidal Categories

- If C is symmetric monoidal and $\mathcal{T}:\textbf{C}\rightarrow\textbf{C}$ a strong monad;
- then $\boldsymbol{C}_{\mathcal{T}}$ does not necessarily have a monoidal structure,

- If C is symmetric monoidal and $\mathcal{T}:\textbf{C}\rightarrow\textbf{C}$ a strong monad;
- then $\boldsymbol{C}_{\mathcal{T}}$ does not necessarily have a monoidal structure,
- $C_{\mathcal{T}}$ has a *premonoidal structure* [Power and Robinson, 1997].

- If ${\boldsymbol{\mathsf{C}}}$ is symmetric monoidal and ${\mathcal{T}}:{\boldsymbol{\mathsf{C}}}\to{\boldsymbol{\mathsf{C}}}$ a strong monad;
- then $\boldsymbol{C}_{\mathcal{T}}$ does not necessarily have a monoidal structure,
- **C**_T has a *premonoidal structure* [Power and Robinson, 1997].
- there are two families of functors $(-\otimes_I X')$ and $(X \otimes_r -)$ on \mathbf{C}_T .

- If C is symmetric monoidal and $\mathcal{T}: \mathbf{C} \to \mathbf{C}$ a strong monad;
- then $\boldsymbol{C}_{\mathcal{T}}$ does not necessarily have a monoidal structure,
- **C**_T has a *premonoidal structure* [Power and Robinson, 1997].
- there are two families of functors $(-\otimes_I X')$ and $(X \otimes_r -)$ on $\mathbf{C}_{\mathcal{T}}$.

Definition (Central morphism [Power and Robinson, 1997])

A morphism $f: X \to Y$ in $\mathbf{C}_{\mathcal{T}}$ is *central* if for any morphism $f': X' \to Y'$

commutes in $\mathbf{C}_{\mathcal{T}}$.

- If C is symmetric monoidal and $\mathcal{T}:\textbf{C}\rightarrow\textbf{C}$ a strong monad;
- then $\boldsymbol{C}_{\mathcal{T}}$ does not necessarily have a monoidal structure,
- **C**_T has a *premonoidal structure* [Power and Robinson, 1997].
- there are two families of functors (− ⊗_I X') and (X ⊗_r −) on C_T.

Definition (Central morphism [Power and Robinson, 1997])

A morphism $f: X \to Y$ in $\mathbf{C}_{\mathcal{T}}$ is *central* if for any morphism $f': X' \to Y'$

commutes in $C_{\mathcal{T}}$.

Central cones and central morphisms are actually equivalent notions!

- $Z(\mathbf{C}_{\mathcal{T}})$: the wide subcategory of $\mathbf{C}_{\mathcal{T}}$ with central morphisms.
- It is symmetric monoidal [Power and Robinson, 1997].

- $Z(\mathbf{C}_{\mathcal{T}})$: the wide subcategory of $\mathbf{C}_{\mathcal{T}}$ with central morphisms.
- It is symmetric monoidal [Power and Robinson, 1997].

Proposition

If the strong monad \mathcal{T} is centralisable, then the canonical embedding $\mathcal{I}: \mathbf{C}_{\mathcal{Z}} \to \mathbf{C}_{\mathcal{T}}$ corestricts to an isomorphism of categories $\hat{\mathcal{I}}: \mathbf{C}_{\mathcal{Z}} \to Z(\mathbf{C}_{\mathcal{T}}).$

- $Z(\mathbf{C}_{\mathcal{T}})$: the wide subcategory of $\mathbf{C}_{\mathcal{T}}$ with central morphisms.
- It is symmetric monoidal [Power and Robinson, 1997].

Proposition

If the strong monad \mathcal{T} is centralisable, then the canonical embedding $\mathcal{I}: \mathbf{C}_{\mathcal{Z}} \to \mathbf{C}_{\mathcal{T}}$ corestricts to an isomorphism of categories $\hat{\mathcal{I}}: \mathbf{C}_{\mathcal{Z}} \to Z(\mathbf{C}_{\mathcal{T}}).$

This is why we call \mathcal{Z} <u>the</u> centre of \mathcal{T} .

Premonoidal adjunction

In the Kleisli adjunction between C and C_T, the left adjoint,
 J : C → C_T always corestricts to Ĵ : C → Z(C_T).

In the Kleisli adjunction between C and C_T, the left adjoint,
 J : C → C_T always corestricts to Ĵ : C → Z(C_T).

Proposition

If the strong monad T is centralisable, then $\hat{\mathcal{J}}$ is also a left adjoint and the adjunction induces the centre \mathcal{Z} .

Characterisation

Theorem (Centralisability)

Let **C** be a symmetric monoidal category and \mathcal{T} a strong monad on it. The following are equivalent:

- 1. For any object X of C, T admits a terminal central cone at X;
- There exists a commutative submonad Z of T such that the canonical embedding functor I : C_Z → C_T corestricts to an isomorphism of categories C_Z ≅ Z(C_T);
- 3. The corestriction of the Kleisli left adjoint $\mathcal{J} : \mathbf{C} \to \mathbf{C}_{\mathcal{T}}$ to the premonoidal centre $\hat{\mathcal{J}} : \mathbf{C} \to Z(\mathbf{C}_{\mathcal{T}})$ also is a left adjoint.

- Using the main theorem, it follows every strong monad on many categories of interest (e.g., Set, DCPO, Meas, Top, Hilb, Vect) is centralisable.
- If **C** is a symmetric monoidal closed category that is total, then every strong monad on it is centralisable.
- If ${\mathcal T}$ is a commutative monad, then ${\mathcal T}$ is centralisable and its centre coincides with itself.
- Is every strong monad centralisable?

- Using the main theorem, it follows every strong monad on many categories of interest (e.g., Set, DCPO, Meas, Top, Hilb, Vect) is centralisable.
- If **C** is a symmetric monoidal closed category that is total, then every strong monad on it is centralisable.
- If ${\mathcal T}$ is a commutative monad, then ${\mathcal T}$ is centralisable and its centre coincides with itself.

Is every strong monad centralisable? No! Example built with a full subcategory **C** of **Set** where not all subsets of $\mathcal{T}X$ are objects of **C**.

Example

The valuation monad $\mathcal{V}\colon \textbf{DCPO}\to \textbf{DCPO}$ is strong, but its commutativity is an open problem [Jones, 1990]. The central submonad of $\mathcal V$ is precisely the "central valuations monad" described in [Jia et al., 2021].

Computational interpretation

A meta language

Type theory: a term judgement is given by: a context Γ of variables in the term, a term M define by a grammar (soon below), a type. A judgement is written: $\Gamma \vdash M : A$.

A meta language

Type theory: a term judgement is given by: a context Γ of variables in the term, a term M define by a grammar (soon below), a type. A judgement is written: $\Gamma \vdash M : A$.

$$\overline{\Gamma, x : A \vdash x : A}$$

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x^{A}.M : A \to B} \qquad \frac{\Gamma \vdash M : A \to B \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B}$$

A meta language

Type theory: a term judgement is given by: a context Γ of variables in the term, a term M define by a grammar (soon below), a type. A judgement is written: $\Gamma \vdash M : A$.

Semantics

Two types of semantics:

- One is syntactic: equational theory,
- The other is categorical: denotational semantics.

Semantics

Two types of semantics:

- One is syntactic: equational theory,
- The other is categorical: denotational semantics.

The calculus is given by a set of rules such that:

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash M = M : A} (refl) \qquad \frac{\Gamma \vdash N = M : A}{\Gamma \vdash M = N : A} (symm)$$
$$\frac{\Gamma, x : A \vdash M : B \quad \Gamma \vdash N : A}{\Gamma \vdash (\lambda x^{A} . M)N = M[N/x] : B} (\lambda . \beta)$$

Semantics

Two types of semantics:

- One is syntactic: equational theory,
- The other is categorical: denotational semantics.

The calculus is given by a set of rules such that:

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash M = M : A} (refl) \qquad \frac{\Gamma \vdash N = M : A}{\Gamma \vdash M = N : A} (symm)$$
$$\frac{\Gamma, x : A \vdash M : B \quad \Gamma \vdash N : A}{\Gamma \vdash (\lambda x^{A} . M) N = M[N/x] : B} (\lambda . \beta)$$

 $\frac{\Gamma \vdash M : SA \quad \Gamma \vdash N : \mathcal{T}B \quad \Gamma, x : A, y : B \vdash P : \mathcal{T}C}{\Gamma \vdash \operatorname{do}_{\mathcal{T}} x \leftarrow \iota M; \ \operatorname{do}_{\mathcal{T}} y \leftarrow N; \ P = \operatorname{do}_{\mathcal{T}} y \leftarrow N; \ \operatorname{do}_{\mathcal{T}} x \leftarrow \iota M; \ P : \mathcal{T}C} (centr)$

A theory is this calculus with additional *constants* and equational rules.

We write an interpretation $\llbracket - \rrbracket$.

Types A are interpretated as objects [A] in a category **C**.

Term judgements $\Gamma \vdash M : A$ as morphisms $\llbracket \Gamma \vdash M : A \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket A \rrbracket$. An interpretation of a theory is *sound* if:

$$\Gamma \vdash M = N : A \text{ implies } \llbracket \Gamma \vdash M : A \rrbracket = \llbracket \Gamma \vdash N : A \rrbracket.$$

An interpretation is complete if:

$$\Gamma \vdash M = N : A \text{ iff } \llbracket \Gamma \vdash M : A \rrbracket = \llbracket \Gamma \vdash N : A \rrbracket.$$

If the interpretation of a theory is sound and complete, it is safe to call **C** a *model* of the theory. The types SA and TA give rise to monads in **C** and better: S is a central submonad of T!!

Theories form a 2-category **Th**. Models form a 2-category **Mod**. and...

Theories form a 2-category Th. Models form a 2-category Mod.

and...

Theorem

Th and Mod are 2-equivalent.

do	do
x <- op1	y <- op2
y <- op2	x <- op1
fxy	fxy

If *at least one* of op1 or op2 is central, then the two programs are contextually equivalent!

Ongoing and Future Work

- Notion of Commutant for (pro)monads in general;
- Link with Garner's results on commutativity [Garner and Franco, 2016].

Thank you!

Garner, R. and Franco, I. L. (2016).

Commutativity.

Journal of Pure and Applied Algebra, 220(5):1707–1751.

Jia, X., Mislove, M. W., and Zamdzhiev, V. (2021).

The central valuations monad (early ideas).

In Gadducci, F. and Silva, A., editors, *9th Conference on Algebra and Coalgebra in Computer Science, CALCO 2021, August 31 to September 3, 2021, Salzburg, Austria,* volume 211 of *LIPIcs,* pages 18:1–18:5. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Jones, C. (1990).

Probabilistic Non-determinism.

PhD thesis, University of Edinburgh, UK.

Power, J. and Robinson, E. P. (1997).

Premonoidal categories and notions of computation.

Math. Struct. Comput. Sci., 7:453-468.