
Introduction to linear rewriting:
Gröbner bases and reduction operators

Cyrille Chenavier

Algebraic rewriting Seminar

February 25, 2021

1 / 40



I. Motivations
. Effective algebraic computation

. Formalisation of algebraic computation

II. Commutative Gröbner bases
. Polynomial reduction and Gröbner bases

. Completion algorithms

III. Noncommutative Gröbner bases
. Noncommutative polynomial reduction

. Anick’s resolution and Koszulness

IV. Reduction operators
. Functional representation of linear rewriting systems

. Lattice characterisation of confluence and completion

2 / 40



I. MOTIVATIONS

3 / 40



I. Motivations Algebraic computation and linear rewriting

ALGEBRAIC REWRITING

Effective algebraic computation

Objective: compute with (non)commutative/Lie/tree polynomials

Ô membership problem, computation of representatives and linear bases

Application scopes: algebraic geometry/combinatorics, homological algebra,
formal analysis of functional equations, cryptography

Formalisation of algebraic computation

Paradigms of rewriting: Gröbner bases and adaptations, linear polygraphs,
reduction operators

Algebraic tools for rewriting: monomial orders, critical pairs, higher-dimensional
rewriting strategies
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I. Motivations Algebraic structures presented by oriented relations

Some algorithmic
problems in algebra

• solve decision problems
(e.g., membership problem)

• compute homological invariants
(e.g., Tor, Ext groups)

• analysis of functional systems
(e.g., integrability conditions)

Constructive methods
in algebra

• compute set of representatives
for congruence classes

• construct free resolutions of
modules

• elimination theory for systems
of equations

ALGEBRAIC REWRITING

Approach: orientation of relations Ô notion of normal form

example: chosen orientation in K[x , y ] Ô induced by yx → xy

NF computation: 3 yxx + xyx − xy → 4 xyx− xy → 4 xxy− xy

Remark on the case K[x , y ] : NF monomials xnym form a linear basis

Classical

techniques

Induces (under good hypotheses)
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I. Motivations Normal forms and linear bases of algebras

MOTIVATING PROBLEM

Given an algebra A := K〈X | R〉 presented by generators X and relations R

A := K〈X〉/I(R)
(
e.g ., K[x , y ] = K〈x , y | yx − xy〉

)
Question: given an orientation of R (e.g., yx → xy)

do NF monomials form a linear basis of A?

Equivalently

do NF monomials form
a generating family?

do NF monomials form
a free family?
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I. Motivations Termination

NF monomials do not form a generating family

A := K〈x | x − xx〉 orientation: x → xx

Ô dimK(A) = 2
(
1 and x form a basis

)
Ô 1 is the only NF monomial

(
∀n ≥ 1 : xn → xn+1

)

"termination ↔ generating"

Definition: → is called terminating
if

@ infinite rewriting sequence

f1 → f2 → · · · → fn → fn+1 → . . .

Termination implies:
NF monomials are generators

Prop: let A := K〈X | R〉. If → is a
terminating orientation, then
{NF monomials} is generating
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I. Motivations Confluence

NF monomials are not free

A := K〈x , y | yy − yx〉 orientation: yy → yx
yyy

yxy yyx

yxx

=⇒


yxy = yxx

yxy , yxx are 6=
NF monomials

"confluence ↔ freeness"

Definition: → is called confluent if
.

f •

.

Confluence implies:
NF monomials form a free family

Prop: let A := K〈X | R〉. If → is a
confluent orientation, then

{NF monomials} is free
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I. Motivations Gröbner bases and confluent orientations

Monomial orders
Well-founded total orders on X∗, product compatible

Induces for A := K〈X | R〉

Natural orientation

∀f = lc(f ) lm(f ) − rem(f ) ∈ R

lm(f )→R 1/ lc(f ) rem(f )

Gröbner bases definition

R is called a G.B. of I = I(R) if

lm(I) = 〈lm(R)〉

Theorem. Let I be a (noncommutative) polynomial ideal, R be a generating

set of I, and < be a monomial order. Then,

R is a Gröbner basis of I ⇔ →R is a confluent orientation

9 / 40
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I. Motivations Gröbner bases and confluent orientations

Relationship

Monomial orders
Well-founded total orders on X∗, product compatible

Induces for A := K〈X | R〉

Natural orientation

∀f = lc(f ) lm(f ) − rem(f ) ∈ R

lm(f )→R 1/ lc(f ) rem(f )

Gröbner bases definition

R is called a G.B. of I = I(R) if

lm(I) = 〈lm(R)〉

Theorem. Let I be a (noncommutative) polynomial ideal, R be a generating

set of I, and < be a monomial order. Then,

R is a Gröbner basis of I ⇔ →R is a confluent orientation

9 / 40



I. Motivations Outline

Objective and plan of the talk

Sections II and II: basics of (noncommutative) Gröbner bases

Ô define Gröbner bases in terms of monomials ideals

Ô show rewriting characterisation of Gröbner bases

Ô present completion algorithms and Anick’s resolution

Remark. Gröbner bases have adaptations to many other structures,
e.g., Lie algebras, operads, Weyl/Ore algebras, tensor rings

Section IV: introduction to reduction operators

Ô definition of reduction operators for vector spaces

Ô lattice characterisations of confluence and completion
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II. COMMUTATIVE GRÖBNER BASES
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II. Commutative Gröbner bases Membership problem

Question: given I ⊆ K[X ] and g ⊆ K[X ]

how to compute f mod I?

USING REWRITING!

Case of one variable: we recover Euclidean division, e.g.,

f := x4 + 3x3 + 2x + 1 and g := x2 + 1

f mod (g) is computed by reducing f into NF w.r.t. x2 → −1

x4 + 3x3 + 2x + 1 3x3 − x2 + 2x + 1 −x2 − x + 1 −x + 2

Ô f =
(
x2 + 3x -1

)
.
(
x2 + 1

)
− x + 2

Case of many variables: requires a suitable notion of "leading monomial"

Ô based on monomial orders

12 / 40



II. Commutative Gröbner bases Monomial orders

INDUCED NOTIONS

Definition: a monomial order (on the set of commutative monomials [X ])
is an order < on [X ] s.t.

< is total, well-founded and admissible, i.e.,

∀m,m1,m2 ∈ [X ] : m1 < m2 ⇒ mm1 < mm2

Leading monomial, leading coefficient and remainder

∀f ∈ K[X ] \ {0}, we define

Ô the leading monomial lm(f ) of f as being max(supp(f ))

Ô the leading coefficient lc(f ) of f as being the coefficient of lm(f ) in f

Ô the remainder of f by rem(f ) = lc(f ) lm(f )− f

13 / 40



II. Commutative Gröbner bases Polynomial reduction

THE REMAINDER IS NOT UNIQUE IN GENERAL

Generalisation of Euclidean division

Let f , g ∈ K[X ] and G ⊆ K[X ]

Reducing f w.r.t. g : if f = λm + f ′, with m = lm(g)m′, m /∈ supp(f ′)

and λ 6= 0, then, we have: f →g
λ

lc(f )

(
m′. rem(g)

)
+ f ′

Reducing f w.r.t. G: f →G f ′ iff ∃g ∈ G : f →g f ′

A NF of f for →G is also called a remainder of f w.r.t. G

Example: G := {g1, g2} with g1 := xy 2+x and g2 := 2y 3+xy−1

Ô xy 3 has two remainders: −xy and −x/2.
(
xy − 1

)
14 / 40



II. Commutative Gröbner bases Polynomial reduction

THE REMAINDER IS NOT UNIQUE IN GENERAL

Generalisation of Euclidean division

Let f , g ∈ K[X ] and G ⊆ K[X ]

Reducing f w.r.t. g : if f = λm + f ′, with m = lm(g)m′, m /∈ supp(f ′)

and λ 6= 0, then, we have: f →g
λ

lc(f )

(
m′. rem(g)

)
+ f ′

Reducing f w.r.t. G: f →G f ′ iff ∃g ∈ G : f →g f ′

A NF of f for →G is also called a remainder of f w.r.t. G

Example: G := {g1, g2} with g1 := xy 2+x and g2 := 2y 3+xy−1

Ô xy 3 has two remainders: −xy and −x/2.
(
xy − 1

)
14 / 40



II. Commutative Gröbner bases Definition of Gröbner bases

Definition: let I ⊆ K[X ] and let < be a monomial order on [X ].

A (commutative) Gröbner basis of I is a subset G ⊆ I s.t.

G is a generating set of I and lm(I) = 〈lm(G)〉

Proposition: the following assertions are equivalent

Ô G is a Gröbner basis of I

Ô ∀f ∈ I, ∃g ∈ G : lm(g) | lm(f )

Ô there is a vector space isomorphism K[X ]/I ' KNF(G)

Ô every f ∈ K[X ] admits a unique remainder w.r.t. G

Ô every S-polynomial of G rewrites into 0

The S-polynomial of g , g ′ ∈ G is

lcm(lm(g), lm(g ′))
lm(g)

g −
lcm(lm(g), lm(g ′))

lm(g ′)
g ′

Definition
of S-polynomials
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II. Commutative Gröbner bases Definition of Gröbner bases

Theorem. Let I be a polynomial ideal, G be a generating set of I, and <

be a monomial order. Then,

G is a Gröbner basis of I ⇔ the polynomial reduction is confluent

Ideas of the proof

Step 1: G is a G.B. of I ⇔ lm(I) ∩ NF(G) = ∅ ⇔ K[X ] = I ⊕ KNF(G)

Step 2: →G is confluent ⇔ every f ∈ K[X ] has a unique NF ⇔ K[X ] = I⊕KNF(G)
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II. Commutative Gröbner bases Buchberger’s algorithm

THE ALGORITHM

Input: a set of monic polynomials f1, . . . , fr ∈ K[X ]

Output: a G.B. G of I(f1, . . . , fr )

Init: G := {f1, . . . , fr} and P := G × G

While P 6= ∅:

Ô remove p from P and reduce spol(p) into NF w.r.t. G

Ô add ̂spol(p) to G and add all the corresponding pairs to P

Return G

Proof of termination: follows from Dickson’s lemma

Proof of correctness: G ⊆ I and every S-polynomials rewrites into 0

17 / 40



II. Commutative Gröbner bases Illustration of Buchberger’s algorithm

EXAMPLE

Input: G := {g1, g2} with g1 := xy2 + x and g2 := y3 + (xy)/2− 1/2

<: the deglex order induced by y < x

While loop:

Ô spol(g1, g2) = −(x2y)/2 + xy + x/2  g3 := x2y− 2xy − x ∈ G

Ô spol(g1, g3) = 2xy 2 + x2 + xy rewrites into g4 := x2 + xy − 2x ∈ G

Ô spol(g2, g3) = −(x3y)/2 + x2/2− 2xy 3 − xy 2 rewrites into 0

Ô spol(g1, g4) = xy 3 − 2xy 2 − x2 rewrites into 0

Ô spol(g2, g4) = xy 4 − (x3y)/2− xy 3 + x2/2 rewrites into 0

Ô spol(g3, g4) = xy 2 + x rewrites into 0

Return
{
xy 2 + x , y 3 + (xy)/2− 1/2, x2y − 2xy − x , x2 + xy − 2x

}
18 / 40



II. Commutative Gröbner bases Buchberger’s algorithm and critical pairs

1st Buchberger’s criterion: if gcd(lm(g), lm(g ′)) = 1, spol(g , g ′) rewrites into 0

Ô we may restrict the algorithm by computing S-pol. with nontrivial gcd

Alternatively: we obtain a linear adaptation of Knuth-Bendix algorithm

Ô with g1 := xy2 + x and g2 := y3 + (xy)/2− 1/2, we get

g3 := x2y− 2xy − x and g4 := x2 + xy − 2x from

xy3 x2y2

−xy −x2y+x
2 −x2 2xy2 + xy

xy − 2x

yg1 xg2 xg1 yg3

−g3+x
2

−g4 2g1+xy

19 / 40



II. Commutative Gröbner bases Completion by Gaussian elimination

Remark. Gröbner bases may be computed by Gaussian elimination

Ô consider a critical pair l ← m→ r

Ô reduce l and r into NF and store the reductions into a matrix M

Ô compute the row echelon form M of M by Gaussian elimination

Ô if some lm(M i•) does not belong to 〈lm(G)〉, then add M i• to G

Illustration: consider g1 := xy 2 + x and g2 := y 3 + (xy)/2− 1/2

xy 3

−xy −x2y+x
2

yg1 xg2

xy 3 x2y xy x

1 0 1 0 yg1

1 1
2 0 - 12 xg2

By Gaussian elimination

we get

g3 := x2y− 2xy− x
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II. Commutative Gröbner bases F4 algorithm

THE ALGORITHM

Input: a set of monic polynomials f1, . . . , fr ∈ K[X ]

Output: a G.B. G of I(f1, . . . , fr )

Init: G := {f1, . . . , fr} and P := G × G

While P 6= ∅:

Ô remove from P a selected subset P ′ of P

Ô reduce the spol of elements of P ′ into normal form

Ô store all reductions into a matrix M

Ô compute the row echelon form M of M

Ô add to G each M i• with leading monomial not in 〈lm(G)〉

Ô add the corresponding pairs to P

Return G
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II. NONCOMMUTATIVE GRÖBNER BASES
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III. Noncommutative Gröbner bases Gröbner bases theory and noncommutative algebra

OBJECTIVE: adapt G.B. theory

to the noncommutative framework

One need noncommutative adaptations of

• monomial orders Ô definition of noncommutative G.B.

• polynomial reduction Ô rewriting characterisation of noncommutative G.B.

• S-polynomials Ô noncommutative Buchberger’s/F4 procedures

We apply noncommutative G.B. to homological algebra Ô Anick’s resolution
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III. Noncommutative Gröbner bases Definitions

Monomial order: total, well-founded order < on noncommutative monomials 〈X〉,

that is admissible i.e.,

∀m,m′,m1,m2 ∈ [X ] : m1 < m2 ⇒ mm1m′ < mm2m′

Gröbner bases: a generating subset G of the ideal I ⊆ K〈X〉 s.t. lm(I) = 〈lm(G)〉

(for a fixed monomial order <)

Polynomial reduction: given G ⊆ K〈X〉 and a monomial order <:

λ
(
m lm(g)m′

)
+ f →G

λ

lc(g)

(
m rem(g)m′

)
+ f

where g ∈ G , λ 6= 0, m,m′ ∈ 〈X〉 and m lm(g)m′ /∈ supp(f )
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III. Noncommutative Gröbner bases Rewriting characterisation of noncommutative G.B.

Theorem. Let I be a noncommutative polynomial ideal, G be a generating

set of I, and < be a monomial order. Then,

G is a Gröbner basis of I ⇔ →G is confluent

Remark. If A = K〈X | R〉 := K〈X〉/〈R〉 is an algebra and < is a monomial order,

then R is a Gröbner basis of 〈R〉 iff →R is a confluent orientation of R.

In this case, A admits as a basis{
m mod 〈R〉 | m is a normal form for →R

}
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III. Noncommutative Gröbner bases Ideal membership and PBW theorem

Two applications of:
"Gröbner bases ↔ confluent orientations"

Ideal membership problem: given a G.B. G of I and f ∈ K〈X〉, how to decide f ∈ I?

Ô reduce f into normal form f̂ using G and test f̂ = 0

Ô f̂ is independent from the reduction path!

PBW theorem: let L be a Lie algebra and let X be a totally well-ordered basis of L .

Then, the universal enveloping algebra U (L ) of L admits as a basis{
xα1
1 . . . xαk

k | xi < xi+1 ∈ X , αi ∈ N
}

Ideas of the proof:

Ô presentation of U (L ): K〈X | yx − xy − [y , x ], x 6= y ∈ X〉

Ô choice of orientation: yx → xy + [y , x ], where x < y

Ô this orientation is confluent (equivalent to Jacobi identity)

Ô a basis of U (L ) is composed of NF monomials: xα1
1 . . . xαk

k s.t. xi < xi+1
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III. Noncommutative Gröbner bases S-polynomials and completion procedures

S-polynomials

Ambiguities of G ⊆ K〈X〉: tuples a = (w1,w2,w3, g , g ′) such that

• w1,w2,w3 ∈ 〈X〉 with w2 6= 1 and g , g ′ ∈ G

• one of the following two conditions holds

Ô w1w2 = lm(g) and w2w3 = lm(g ′) (overlapping)

Ô w1w2w3 = lm(g) and w2 = lm(g ′) (inclusion)

S-polynomials: spol(a) = gw3 − w1g ′ if a is an overlapping

spol(a) = w1gw3 − g ′ if a is an inclusion

Proposition: G is a noncommutative G.B. iff every spol rewrites into 0

Completion procedures: adaptations of Buchberger’s and F4 procedures
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III. Noncommutative Gröbner bases Anick’s chains

Fix G ⊆ K〈X〉 and a monomial order

Definition: Anick’s n-chains and their tails are defined by induction

Ô the unique (−1)-chain is 1, which is its own tail
0-chains are elements of X , which are their own tails

Ô if n ≥ 1: a n-chain with tail t is a monomial mt such that

i. m is a (n − 1)-chain with tail t ′

ii. t is a normal form w.r.t. G

iii. t ′t is uniquely reducible, on its right

Example: if lm(G) = {xyx , yxy}

0-chains: x and y 1-chains: xyx and yxy 2-chains: xyxy and yxyx

3-chains: xyxyxy and yxyxyx 4-chains: xyxyxyx and yxyxyxy
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III. Noncommutative Gröbner bases Anick’s resolution

Framework:

We fix: A = K〈X | R〉 ε→ K (with ker(ε) = 〈X〉) and a monomial order <

Assumption: R is a reduced noncommutative Gröbner basis of 〈R〉

Construction of Anick’s resolution: main steps

Ô consider the free (left A−)modules A〈Cn〉 generated by n-chains

(A〈C−1〉 ' A, A〈C0〉 = A〈X〉, A〈C1〉 ' A〈R〉)

Ô boundaries ∂n are constructed simultaneously with the contracting homotopy ιn

they satisfy the identities: ∂n ◦ ∂n+1 = 0 and ∂n+1 ◦ ιn = idker(∂n)

. . . A〈Cn〉 A〈Cn−1〉 . . . A〈C1〉 A〈C0〉 A〈C−1〉 K→ 0

∂n

ιn−1

∂1 ∂0

ι0

ε

ι−1
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III. Noncommutative Gröbner bases General construction in small degrees

Required relations: ∂n ◦ ∂n+1 = 0 and ∂n+1 ◦ ιn = idker(∂n)

A〈lm(R)〉 A〈X〉 A K 0

∂1 ∂0

ε

ι0 ι−1

∂0 and ι−1: ∂0([x ]) := x and ι−1(mx) := m.[x ] (mx ∈ NF)

Ô ker(ε) = im(∂0) and ∂0 ◦ ι−1 = idker(ε)

∂1 and ι0: ∂1([lm(g)]) := m.[x ]−
∑

λimi .[xi ] where g = mx −
∑

λimixi

Ô ∂0 ◦ ∂1 = 0 since ∂1[lm(g)] = m.[x ]− ι−1 ◦ ∂0(m.[x ])

∀h ∈ ker(∂0) with leading term m.[x ], there is a factorisation mx = m′ lm(g)

ι0(h) := m′.[lm(g)] + ι0

(
(h − ∂1

(
m′.[lm(g)]

))
Ô ∂1 ◦ ι0 = idker(∂0) is proven by induction
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III. Noncommutative Gröbner bases General construction: sketch

Required relations: ∂n ◦ ∂n+1 = 0 and ∂n+1 ◦ ιn = idker(∂n)

A〈Cn+1〉 A〈Cn〉 A〈Cn−1〉

∂n+1 ∂n

ιn ιn−1

A〈Cn+1〉
∂n+1−→ A〈Cn〉: ∂n+1([m | t]) := m.[t]− ιn−1 ◦ ∂n (m.[t])

Ô ∂n ◦ ∂n+1 = 0 (using the induction hypothesis ∂n ◦ ιn−1 = 0)

A〈Cn〉
ιn−→ A〈Cn+1〉: ∀h ∈ ker(∂n) with leading term m.[c], mc = m′c ′, with c ′ ∈ Cn+1

ιn(h) := m′.[c ′] + ι0

(
(c − ∂1

(
m′.[c ′]

))
Ô ∂n+1 ◦ ιn = idker(∂n) is proven by induction
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III. Noncommutative Gröbner bases Some consequences

Using the Anick’resolution, we can prove:

Ô if A = K〈X | R〉 is a monomial algebra, i.e. R ⊆ 〈X〉, then

TorA(K,K) =
⊕

n

KCn

Ô if A is presented by a quadratic Gröbner basis, then it is Koszul

Ô if A is presented by an N-homogeneous Gröbner basis and
satisfies the extra-condition, then it is N-Koszul
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IV. REDUCTION OPERATORS
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IV. Reduction operators Motivations

A brief overview on reduction operators

Bergman, 1978: formalism for rewriting noncommutative polynomials

Berger 1998, 2001: lattice characterisation of homogeneous G.B.

applied to Koszul duality

C. 2016, 2018: lattice characterisations of confluence and completion

with the following applications

Ô constructive proof of Koszulness

Ô lattice formulation of the noncommutative F4 completion procedure

Ô computation of syzygies and detection of useless critical pairs
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IV. Reduction operators Definition of reduction operators

Functional representation of rewriting strategies

Example: yy → yx  left/right reduction operators on 3 letter words

yyy

yxy yyx

yxx

L R

L

Properties of L and R: they are linear projectors of KX (3) (or K〈X〉) and

compatible with the deglex order induced by x < y

Definition: a reduction operator on a vector space V equipped with

a well-ordered basis (G , <) is a linear projector of V s.t.

∀g ∈ G : T (g) = g or lm(T (g)) < g
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IV. Reduction operators Matrix representation

Remark. Finite dimensional restrictions of R.O. admit matrix representations, e.g.,

yyy

yxy yyx

yxx

L R

L

The matrix representations of L and R are

L =

yxx yxy yyx yyy

1 0 0 1

0 1 0 1

0 0 0 0

0 0 0 0

R =

yxx yxy yyx yyy

1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0
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IV. Reduction operators Lattice structure

Proposition: the kernel map induces a bijection between R.O. and subspaces

ker :
{
reduction operators on V

}
↔

{
subspaces of V

}
In particular, reduction operators admit the following lattice operations

Ô T1 � T2 iff ker(T2) ⊆ ker(T1)

Ô T1 ∧ T2 is the reduction operator with kernel ker(T1) + ker(T2)

Ô T1 ∨ T2 is the reduction operator with kernel ker(T1) ∩ ker(T2)

Moreover, T1 ∧ T2 computes minimal normal forms

yyy

yxy yyx

yxx

L R

L
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IV. Reduction operators Lattice structure illustration

Computing lower bound using Gaussian elimination

Example: consider

L =

1 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0

 R =

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0



ker(L ∧ R) = ker(L) + ker(R) = K{yyx − yxx , yyy − yxy , yyy − yyx}

= K{yxy-yxx, yyx-yxx, yyy-yxx}
Hence

L ∧ R =

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0


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IV. Reduction operators Obstructions to confluence

Lemma/Definition. For a familly F of R.O., we have

im(∧F ) ⊆
⋂

T∈F

im(T )  
⋂

T∈F

im(T ) = im(∧F )⊕K obs(F )

Illustration. Consider
yyy

yxy yyx

yxx

L R

L

im(L) ∩ im(R) = im(L ∧ R)⊕K{yxy} Ô obs(L,R) = K{yxy}

Remark. (L,R) is completed by the operator mapping any obstruction
to its image by the lower bound
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IV. Reduction operators Lattice characterisations of confluence and completion

Theorem. Let F be a family of reduction operators and →F be the induced
rewriting relation on V . Then, →F is confluent if and only if

im(∧F ) =
⋂

T∈F

im(T )

Moreover, if →F is not confluent, then F is completed by

C(F ) := ∧F ∨
(
∨F
)

where

∨F := ker−1
(⋂

T∈F

im(T )

)
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