

2-POLYGRAPHS AND STRING REWRITING Illustration with plactic monoids

Nohra Hage

Université Saint-Joseph de Beyrouth (USJ) École supérieure d'ingénieurs de Beyrouth (ESIB)

> January 21, 2020 Beirut

Séminaire de réécriture algébrique

- 1. Two dimensional categories and polygraphs
- 2. Rewriting properties of 2 polygraphs
 - The Knuth–Bendix's completion
- 3. Column presentation for the plactic monoid of type A
- 4. Coherence

1. Two dimensional categories and polygraphs

Two dimensional categories and polygraphs

A 1-category is a data C made of :

- a set C₀ of 0-cells of C,
- for every 0-cells x and y, a set C(x, y) of 1-cells from x to y.
- for every 0-cells x, y and z, a 0-composition map

 $\star_0: \mathbf{C}(x, y) \times \mathbf{C}(y, z) \to \mathbf{C}(x, z),$

- for every 0-cell x, a specified element 1_x of C(x, x),
- such that
 - the composition is associative :

 $((\boldsymbol{u} \star_0 \boldsymbol{v}) \star_0 \boldsymbol{w}) = (\boldsymbol{u} \star_0 (\boldsymbol{v} \star_0 \boldsymbol{w})),$

for every 0-cells x, y, z, t, and 1-cells $u : x \to y, v : y \to z, w : z \to t$.

the identities are local units for the composition :

 $1_x \star_0 u = u = u \star_0 1_y.$

for every 0-cells x, y and 1-cell $u : x \rightarrow y$.

- ▶ Monoid $M(., 1_M) \leftrightarrow$ category **M** with one 0-cell :
 - ▶ 1-cells of $\mathbf{M}(\bullet, \bullet)$ are elements of M,
 - ▶ 1• \leftrightarrow 1_{*M*}, composition $u \star_0 v$ in $\mathbf{M}(\bullet, \bullet) \leftrightarrow$ product u.v in M.

Two dimensional categories and polygraphs

A functor F : C → D is a data made of a map F₀ : C₀ → D₀ and, for every 0-cells x and y of C, a map

$$F_{x,y}$$
 : $\mathbf{C}(x,y) \rightarrow \mathbf{D}(F_0(x),F_0(y)),$

such that

► for every 0-cells x, y and z and every 1-cells $u : x \to y$ and $v : y \to z$ of C, $F_{X,Z}(u \star_0 v) = F_{X,Y}(u) \star_0 F_{Y,Z}(v),$

for every 0-cell x of C,

$$F_{x,x}(1_x) = 1_{F_0(x)}.$$

• A 1-polygraph is a directed graph (Σ_0, Σ_1) :

$$\Sigma_0 \stackrel{\boldsymbol{S}_0}{\longleftarrow} \Sigma_1$$

- given by a set Σ_0 of 0-cells, a set Σ_1 of 1-cells,
- maps s_0 and t_0 sending a 1-cell x on its source $s_0(x)$ and its target $t_0(x)$.

Two dimensional polygraphs and polygraphs

- The free category Σ_1^* generated by a 1-polygraph (Σ_0, Σ_1) :
 - objects are the 0-cells in Σ₀,
 - ► for any 0-cells *p* and *q*, the elements of $\Sigma_1^*(p, q)$ are paths in (Σ_0, Σ_1) :

$$p \xrightarrow{x_1} p_1 \xrightarrow{x_2} p_2 \xrightarrow{x_3} \dots \xrightarrow{x_{n-1}} p_{n-1} \xrightarrow{x_n} q$$

- the composition is the concatenation of paths,
- the identity on a 0-cell p is the empty path with source and target p.
- A 1-polygraph Σ generates a category C if
 - \triangleright Σ has the same 0-cells as C,
 - ▶ for every 0-cells *x* and *y* of **C**, the map

 $\Sigma^*(x, y) \rightarrow \mathbf{C}(x, y)$

is surjective.

Two dimensional polygraphs and polygraphs

- A 2-polygraph Σ is a triple $(\Sigma_0, \Sigma_1, \Sigma_2)$, where
 - (Σ_0, Σ_1) is a 1-polygraph,
 - Σ₂ is a cellular extension of the free category Σ₁^{*}:

The elements Σ₂ are called the 2-cells of Σ, or the rewriting rules of Σ.

A congruence on a category C is an equivalence relation ≡ on parallel 1-cells of C that is compatible with the composition of C :

of **C** such that $u \equiv v$, we have $wuw' \equiv wvw'$.

Two dimensional polygraphs and polygraphs

- If Γ is a cellular extension of C, the congruence ≡_Γ generated by Γ is the smallest congruence relation such that, if γ : u ⇒ v is in Γ, then u ≡_Γ v.
- The quotient of C by Γ is the category C/Γ :
 - the 0-cells of C/Γ are the ones of C,
 - ► for every 0-cells *x*, *y* of **C**, the set $C/\Gamma(x, y)$ is the quotient of C(x, y) by the restriction of \equiv_{Γ} .
- The category $\overline{\Sigma}$ presented by a 2-polygraph Σ is the category

 $\overline{\Sigma} \; = \; \Sigma_1^* / \Sigma_2.$

- A presentation of a category C is a 2-polygraph Σ such that $C \simeq \overline{\Sigma}$.
 - the 1-cells of Σ : generating 1-cells of C, or generators of C,
 - the 2-cells of Σ : generating 2-cells of C, or relations of C.

2-polygraphs are Tietze-equivalent if they present the same category.

Example.

The plactic monoid \mathbf{P}_n of rank *n* is presented by the 2-polygraph Knuth₂(*n*) :

- ▶ set of 1-cells : [n] := {1 < ... < n},</p>
- 2-cells are the Knuth relations :

 $\{ zxy \stackrel{\eta_{x,y,z}}{\Longrightarrow} xzy \mid 1 \le x \le y < z \le n \} \cup \{ yzx \stackrel{\varepsilon_{x,y,z}}{\Longrightarrow} yxz \mid 1 \le x < y \le z \le n \}.$

- (Schensted, 61, '70), (Knuth, '70) : Young tableaux and insertions.
- (Lascoux, Schützenberger, '81) : theory of symmetric polynomials
 - first correct proof of the Littelwood–Richardson rule
- representations of finite-dimensional complex semisimple Lie algebras
 - Kashiwara crystal theory
 - Littelmann path model
 - Classification of plactic monoids in classical types and exceptional ones.

Two dimensional categories and polygraphs

- A 2-category is a data C made of :
 - a set C₀ of 0-cells of C,
 - for every 0-cells x, y, a category C(x, y),
 - whose 0-cells and 1-cells are called the 1-cells and the 2-cells from x to y of C.
 - for every 0-cells x, y, z, a functor

 $\star_0^{x,y,z} : \mathbf{C}(x,y) \times \mathbf{C}(y,z) \to \mathbf{C}(x,z),$

• for every 0-cell x, a specified 0-cell 1_x of the category C(x, x),

such that

Associativity : for every 0-cells x, y, z and t :

$$\star_0^{x,z,t} \circ (\star_0^{x,y,z} \times \mathrm{Id}_{\mathbf{C}(z,t)}) = \star_0^{x,y,t} \circ (\mathrm{Id}_{\mathbf{C}(x,y)} \times \star_0^{y,z,t}),$$

Identities axiom : for every 0-cells x and y :

$$\star_{0}^{x,x,y} \circ (1_{x} \times \mathrm{Id}_{\mathbf{C}(x,y)}) = \mathrm{Id}_{\mathbf{C}(x,y)} = \star_{0}^{x,y,y} \circ (\mathrm{Id}_{\mathbf{C}(x,y)}, 1_{y}).$$

Two dimensional categories and polygraphs

The **free 2-category** Σ^* over a 2-polygraph Σ :

- the 0-cells of Σ^* are the ones of Σ ,
- for every 0-cells x and y of Σ , the category $\Sigma_2^*(x, y)$ is defined as

- the free category over the 1-polygraph whose

- 0-cells are the 1-cells from x to y of Σ_1^* ,

- 1-cells are the

with α in Σ_2 and *w* and *w'* in Σ_1^* ,

- quotiented by the congruence generated by the cellular extension

 $\alpha ws(\beta) \star_1 t(\alpha) w\beta \equiv s(\alpha) w\beta \star_1 \alpha wt(\beta),$

for α and β in Σ_2 and *w* in Σ_1^* .

- 1. Two dimensional categories and polygraphs
- 2. Rewriting properties of 2 polygraphs

Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph.

A rewriting step of Σ is a 2-cell of the free 2-category Σ₂^{*}:

where α is 2-cell of Σ_2 and w, w' are 1-cells of Σ_1^* .

• A rewriting sequence of Σ :

$$w_1 \Longrightarrow w_2 \Longrightarrow \cdots \Longrightarrow w_n \Longrightarrow \cdots$$
.

• w rewrites into $w' : \Sigma$ has a non-empty rewriting sequence from w to w'.

- w is a **normal form** : Σ has no rewriting step with source w.
- \blacktriangleright w' is a normal form of w : w' is a normal form and w rewrites into w'.
- Σ terminates if it has no infinite rewriting sequences.

Let $\Sigma = (\Sigma_0, \Sigma_1, \Sigma_2)$ be a 2-polygraph.

Branching of Σ is a pair (f, f_1) of 2-cells of Σ_2^* with a common source :

 $\begin{array}{c}
T \\
V \\
U \\
V \\
V$

Local branching : f and f₁ are rewriting steps.

A branching is confluent :

 \triangleright Σ is **confluent** : all of its branchings are confluent.

locally confluent : all of its local branchings are confluent.

Newman's Lemma. The local confluence property and the confluence property are equivalent for terminating 2-polygraphs.

Let $\boldsymbol{\Sigma} = (\boldsymbol{\Sigma}_0,\boldsymbol{\Sigma}_1,\boldsymbol{\Sigma}_2)$ be a 2-polygraph.

- \triangleright Σ is **convergent** if it terminates and it is confluent.
 - every 1-cell w in Σ_1^* has a unique normal form \widehat{w} :

• w = w' in $\overline{\Sigma}$ if, and only if, $\widehat{w} = \widehat{w'}$ holds in Σ_1^* .

- Local branchings of Σ :
 - **aspherical** branchings : shape (f, f) with source *u* and target (v, v).
 - Peiffer branchings :

 uu_1

• overlapping branchings : remaining local branchings.

Local branchings are ordered by the order _ generated by

 $(f, f_1) \sqsubseteq (ufv, uf_1v).$

► Critical branching : overlapping local branching minimal for **_**.

Critical pair theorem. A 2-polygraph is locally confluent if, and only if, all its critical branchings are confluent.

Example. The Knuth presentation $Knuth_2(2)$ of the plactic monoid P_2 :

- ▶ 1-cells : 1, 2,
- ► 2-cells : $\eta_{1,1,2}$: 211 \Rightarrow 121, $\epsilon_{1,2,2}$: 221 \Rightarrow 212.
- This presentation is
 - terminating,
 - convergent :

- 1. Two dimensional categories and polygraphs
- 2. Rewriting properties of 2 polygraphs
 - The Knuth–Bendix's completion

Consider a terminating 2-polygraph Σ , with a total termination order \leq .

The Knuth–Bendix's completion of $\Sigma \rightsquigarrow 2$ -polygraph $\mathcal{KB}(\Sigma)$:

- We start with $\mathcal{KB}(\Sigma) = \Sigma$ and the set \mathcal{CB} of critical branchings of Σ .
 - ► If *CB* is empty, then the procedure stops.
 - Otherwise, we pick a branching (f, f_1) with source u:

- If $\hat{v} = \hat{v_1}$, then (f, f_1) is confluent and we pass to next critical branching,
- If î > ii, we add α : i ⇒ ii to KB(Σ) and all the new critical branchings created by α to CB,
- If $\hat{\nu} < \hat{\nu}_1$, we add $\alpha : \hat{\nu}_1 \Rightarrow \hat{\nu}$ to $\mathcal{KB}(\Sigma)$ and all the new critical branchings created by α to \mathcal{CB} ,
- we remove (f, f_1) from CB and restart from the beginning.

Theorem. (Knuth–Bendix, 70). $\mathcal{KB}(\Sigma)$ is a convergent presentation of $\overline{\Sigma}$. Moreover, $\mathcal{KB}(\Sigma)$ is finite if, and only if, Σ is finite and the Knuth–Bendix's completion procedure halts.

Example. Consider the Knuth presentation $Knuth_2(3)$ of P_3 whose 2-cells are

This presentation admits the following critical branchings :

By Knuth-Bendix's completion procedure, we add the following 2-cells

 $3212 \xrightarrow{\beta_{\Phi}} 2321, \quad 32131 \xrightarrow{\beta_{10}} 31321, \quad 32321 \xrightarrow{\beta_{11}} 32132.$

Again using these new 2-cells, we obtain the following critical branchings

Theorem. (Kubat-Okninski, 11). For n > 3, there is no finite completion of $\mathcal{KB}(\operatorname{Knuth}_2(n))$ compatible with the lexicographic order.

Skech of proof.

Prove by induction that Knuth₂(4) does not admit a finite completion.

Suppose that there exists a rule β_{i-1} : $323^{i-1}431 \Rightarrow 3213^{i-1}43$ added after the *i*-th step of completion. Then :

Question. Does the plactic monoid admit a finite convergent presentation?

- 1. Two dimensional categories and polygraphs
- 2. Rewriting properties of 2 polygraphs
 - The Knuth–Bendix's completion
- 3. Column presentation for the plactic monoid of type A

Young) tableaux :

 $R_{col}(t) = 6421\ 8521\ 531\ 632\ 54\ 74\ 4$

Schensted's insertions :

▶ *u* = 231415

(Young) tableaux :

5

 $R_{col}(t) = 6421\ 8521\ 531\ 632\ 54\ 74\ 4$

Schensted's insertions :

2

1	1	4	5	=	Y(u
2	3				(-

3 5

Young) tableaux :

 $R_{col}(t) = 6421\ 8521\ 531\ 632\ 54\ 74\ 4$

Schensted's insertions :

▶ *u* = 231415

 $((((((\emptyset \nleftrightarrow_{S_r} 2) \nleftrightarrow_{S_r} 3) \nleftrightarrow_{S_r} 1) \nleftrightarrow_{S_r} 4) \nleftrightarrow_{S_r} 1) \nleftrightarrow_{S_r} 5)$

 $= \ (2 \leadsto_{\mathcal{S}_{I}} (3 \leadsto_{\mathcal{S}_{I}} (1 \leadsto_{\mathcal{S}_{I}} (4 \leadsto_{\mathcal{S}_{I}} (1 \leadsto_{\mathcal{S}_{I}} (5 \leadsto_{\mathcal{S}_{I}} \emptyset))))))$

The juxtaposition of two columns $u = x_p \dots x_1$ and $v = y_q \dots y_1$

can form a Young tableau.

• Denote $u^{\times} v$ in other cases :

Lemma. Suppose $u^{\times} v$. The tableau Y(uv) consists of at most two columns. Moreover, if Y(uv) contains exactly two columns, the left column contains more elements than u.

$$C_U C_V \stackrel{\alpha_{U,V}}{\Longrightarrow} C_W C_{W'}$$

such that

- \blacktriangleright w and w' are the columns of Y(uv) if it consists of two columns,
- w = uv and w' is empty, otherwise.

Theorem. (Cain-Gray-Malheiro, 14). The 2-polygraph $Col_2(n)$:

- 1-cells : column generators,
- ► 2-cells : $c_u c_v \stackrel{\alpha_{u,v}}{\Longrightarrow} c_w c_{w'}$, for $u^{\times} v$,

is a finite convergent presentation of the plactic monoid \mathbf{P}_n .

- 1. Two dimensional categories and polygraphs
- 2. Rewriting properties of 2 polygraphs
 - The Knuth–Bendix's completion
- 3. Column presentation for the plactic monoid of type A
- 4. Coherence

Coherence

Coherent presentation :

- a presentation of the category,
 - generators
 - rules
- globular homotopy generators : the relations amongst the relations
- Squier's theorem

Column coherent presentation of the plactic monoid, (H., Malbos, '16) :

- generators : columns
- $\blacktriangleright \text{ rules : } \alpha_{u,v} : c_u c_v \Rightarrow c_w c_{w'}$
- homotopy generators :

$$\underset{C_{U}C_{V}C_{t}}{\underset{C_{U}\alpha_{V,t}}{\overset{\alpha_{U,V}C_{t}}{\underset{C_{U}C_{W}C_{W'}}{\overset{\alpha_{U,W}C_{W'}}{\underset{\alpha_{U,W}C_{W'}}{\overset{\alpha_{U,W}C_{W'}}}}} \underset{C_{a}C_{b}C_{b'}}{\overset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\overset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\overset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\overset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\overset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\overset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\overset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\overset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\overset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\overset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\overset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\overset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\overset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\overset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\overset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\overset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\overset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\overset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}}{\underset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}}{\underset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}}{\underset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}}{\underset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}{\underset{\alpha_{e,b}C_{b'}}}{\underset{\alpha_{e,b}C_{b'}}}{\underset{\alpha_{e,b}C_{b'}}}{\underset{\alpha_$$

Plactic monoids of classical and exceptional types : convergent presentations ? coherent presentations ?