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Introduction

We have seen that convergence implies decidability of the word
problem. This leads us to ask:

Question
Does a finitely generated monoid with a decidable word problem always
admit a finite convergent presentation?

There are two approaches. LetM be a monoid ;
Homology : M has homological type FP 3 when there exists an
exact sequence

P3
// P2

// P1
// P0

// Z // 0

of modules overM with Pi is projective and finitely generated.
Homotopy : M is of finite derivation type FDT 3 if it admits a
finite presentation with a finite homotopy basis.

We have the following implications:

∃ a finite convergent pres. FDT 3 FP 3
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Goals

We want to extend these ideas to p-categories.
Polygraphic resolutions :

Relate cofibrance in the model structure on ∞Cat to homotopy
bases in every dimension, i.e. acyclicity.

Homotopy :
Strategies : higher dimensional "base-points" via rewriting.
These are used to construct polygraphic resolutions, i.e. cofibrant
replacements in the folk model structure of ∞Cat.
Extends the finiteness condition FDT 3.

Homology :
Abelianisation of homotopy produces a homological invariant
extending FP 3.
Relate polygraphic resolutions to resolutions by modules.

We obtain a rich interplay between computational and
algebraico-topological properties.
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Polygraphic resolutions
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(n, p)-Polygraphs

We denote by n either a natural number or ∞.
For p ≤ n, an (n, p)-category is an n-category whose k-cells are
invertible for every k > p.
A model structure on (∞, p)-categories is inherited from
∞-categories via the adjunction:

For p ≤ n, an (n, p)-polygraph is data Σ consisting of:
a p-polygraph (Σ0, . . . ,Σp),
for every p ≤ k < n, a cellular extension Σk+1 of the free
(k, p)-category

Σ>k = Σ∗p(Σp+1) · · · (Σk).

The free (∞, p)-categories generated by such structures are
cofibrant.
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Polygraphic resolutions

Let C be a p-category.
A polygraphic resolution of C is an acyclic (∞, p)-polygraph Σ such
that Σ ∼= C.
If p < n <∞, a partial polygraphic resolution of length n is an
acyclic (n, p)-polygraph Σ such that Σ is isomorphic to C.

Theorem
Let Σ be a polygraphic resolution of C. The canonical projection Σ>�C
is a cofibrant approximation of C.

C is said to be. . .
of finite ∞-derivation type (FDT∞) when it admits a finite
polygraphic resolution,
of finite n-derivation type (FDTn) when it admits a finite partial
polygraphic resolution of length n.
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Illustration
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Normalisation strategies and homotopy
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Homotopy via rewriting

In general, there are many choices of how to rewrite a given object;
how do we know which path to take?
For a convergent rewriting system, following any path from an
object u, we arrive at the normal form û.

Strategies generalise this notion of normalisation to paths, paths
between paths, . . .
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Homotopy via rewriting

Strategies generalise this notion of normalisation to paths, paths
between paths, . . .
These consist of

a notion of normal form in every dimension,
a reduction from every cell to its normal form.

This information exhibits a homotopy from any k-cell to a “base
point” in each hom-set.
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Normalisation strategies

Let Σ be an (n, p)-polygraph.
A section of Σ is the choice of a representative p-cell û : x→ y in
Σ> for every p-cell u : x→ y of Σ, such that

1̂x = 1x

holds for every (p− 1)-cell x of Σ. Not functorial!
This choice satisfies

u = v in Σ ⇐⇒ û = v̂ in Σ∗

A normalisation strategy for Σ is a mapping σ of every k-cell f of
Σ>, with p ≤ k < n, to a (k + 1)-cell

f
σf // f̂

such that :
for every k-cell f , with p ≤ k < n,

σf̂ = 1f̂

for every pair (f, g) of i-composable k-cells, with p ≤ i < k < n,

σf?ig = σf ?i σg .
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Normalisation strategies

Let Σ be an (n, p)-polygraph.
Choose such a (non-functorial) section (̂−) : Σ � Σ∗p of the
canonical projection π : Σ> � Σ.
Extend the section by induction via f̂ = σs(f) ?k−1 σ

−
t(f) for a k-cell

with k > p.

A normalisation strategy for Σ is a mapping σ of every k-cell f of
Σ>, with p ≤ k < n, to a (k + 1)-cell
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Illustration: (∞, 1)-polygraphs
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Illustration: (∞, 1)-polygraphs

Lemma
Let Σ be an (n, 1)-polygraph. Left (resp. right) normalisation strategies
on Σ are in bijective correspondence with the families

σûφ : ûφ → ûφ ( resp. σφû : φû → φ̂u )

of (k + 1)-cells, indexed by k-cells φ of Σ, for 1 ≤ k < n, and by 1-cells
u of Σ such that the composite k-cell uφ (resp. φu) exists.
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Strategies and acyclicity

Theorem
Let Σ be an (n, 1)-polygraph. We have that

Σ is acyclic ⇐⇒ Σ admits a strategy.

Corollary
A 1-category C is FDTn if, and only if, there exists a finite
(n, 1)-polygraph presenting C which admits a normalisation strategy.

Cameron Calk (LIX) Strategies and resolutions 18/02/2021 12 / 28



Strategies and acyclicity

Theorem
Let Σ be an (n, 1)-polygraph. We have that

Σ is acyclic ⇐⇒ Σ admits a strategy.

Corollary
A 1-category C is FDTn if, and only if, there exists a finite
(n, 1)-polygraph presenting C which admits a normalisation strategy.

Cameron Calk (LIX) Strategies and resolutions 18/02/2021 12 / 28



Strategies and acyclicity

Theorem
Let Σ be an (n, 1)-polygraph. We have that

Σ is acyclic ⇐⇒ Σ admits a strategy.

Corollary
A 1-category C is FDTn if, and only if, there exists a finite
(n, 1)-polygraph presenting C which admits a normalisation strategy.

Now we want to relate convergence to the existence of a strategy. . .
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Reduced polygraphs and ordering

A 2-polygraph Σ is reduced when, for every 2-cell φ : u⇒ v in Σ,
the 1-cell u is a normal form for Σ2 \ {φ} and v is a normal form
for Σ2.

Lemma
For every (finite) convergent n-polygraph, there exists a (finite)
Tietze-equivalent, reduced and convergent n-polygraph.
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Reduced polygraphs and ordering

We define an ordering � on rewrite rules with the same source :
Let u a 1-cell of Σ∗.
For φ and ψ generating 2-cells of Σ, and rewriting steps

f = vφv′ and g = wψw′,

such that s(f) = s(g) = u (a branching), we have

f � g ⇐⇒ v is a prefix of w

This is a total order when Σ is reduced.
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Canonical strategies: initialisation

Let Σ be a reduced 2-polygraph.
Let u a 1-cell of Σ∗ which is not a normal form.
Since Σ is reduced, there are a finite number of steps with source u:

λu := f1 � f2 � · · · � fl−1 � fl =: ρu

Denote respectively by λu and ρu the minimal and maximal
rewriting steps.

Each results in a strategy defined by Noetherian induction.
The rightmost strategy σ of Σ is defined by:

For a normal form û, we (must) have

σû = 1û.

On a reducible 1-cell u, set

σu = ρu ?1 σt(λu).

Note that for every u, the 2-cell σu is an element of Σ∗.
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Reduced critical branchings

Let Σ a reduced convergent 2-polygraph.
What are the critical branchings of Σ?

We conclude that a critical branching is of the form

(φv̂, ρuv̂) .

When Σ is finite, there are a finite number of critical branchings.
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Basis of generating confluences: induction step

The basis of generating confluences of Σ is the cellular extension
c2(Σ) of Σ> made of one 3-cell

ûv̂ σûv̂

�"
uv̂

φv̂ /7

σuv̂

3; ûv
ωb
�

for every critical branching b of Σ, where σ is the rightmost
strategy.

Lemma
The rightmost normalisation strategy of Σ extends to a strategy
of c2(Σ).

Corollary
A category with a finite convergent presentation is FDT 3.
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ωb
�
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In arbitrary dimensions

An n-fold branching of Σ is a family (f1, . . . , fn) of rewriting steps
of Σ with the same source and such that f1 � · · · � fn.
We define local, aspherical, Peiffer, overlapping, minimal and
critical n-fold branchings.
An n-fold critical branching b of Σ must have shape

b =
(
cv̂, ρuv̂

)
where c is a critical (n− 1)-fold branching of Σ with source u.
We again consider the cellular extension cn(Σ) of cn−1(Σ)> filling
every critical branching.

Corollary
A category with a finite convergent presentation is FDT∞.
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Abelianisation and homology
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Modules over monoids

LetM be a monoid.
Recall that a module is an abelian group H equipped with an
external action ofM:

For every m ∈M, a morphism

m̃ : H−→ H

h7−→ m · h,

such that m̃ ◦ m̃′ = (̃m′m).

A resolution ofM is an exact sequence of modules Pi

· · ·
dn+1 // Pn

dn // Pn−1
dn−1 // · · · d2 // P1

ε // Z // 0.

where Z is the trivialM-module.
A resolution is partial of length n when ∃n s.t. Pi = 0 for i > n.
M is of homological type FPn if there exists a resolution of Z by
finitely generated projective modules.
What does this mean in terms of presentations?

Generating elements of P0 correspond to generators ofM.
Equations in P0 are borders of free sums of generators of P1. These
generators correspond to relations.
Equations between relations are similarly “resolved” by elements of
P2, and so on. . .
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Modules over monoids

Let C be a category.
A module M over C is a functor

M : C −→ Ab.

This is generalised by the notion of natural system:
The factorisation category FC of C consists of:

A natural system D over C is a functor

D : FC−→ Ab

w 7−→ Dw
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Free natural system generated by Σ

Let C be a category and Σ an (n, 1)-polygraph presenting C.
Given a family X of 1-cells of C, we denote by DC [X] the free
natural system on C generated by X, which is defined by

DC [X] =
⊕
u∈X

ZFC(u,−).

We define free natural systems generated by Σ:
DC [Σ0] is generated by identities 1u.

DC [Σ0]w = 〈{(u, v) | uv = w}〉.
For 1 ≤ k < n, DC [Σk] is generated by a copy of φ for every k-cell φ
of Σk, i.e.

DC [Σk]w=
⊕
φ∈Σk

ZFC(φ,−)

= 〈{(u, φ, v) | uφv = w}〉.

The generator (u, φ, v) is henceforth denoted by u[φ]v.

Cameron Calk (LIX) Strategies and resolutions 18/02/2021 21 / 28



FP n and co. for categories

Let C be a category.
Denote by Z the natural system on C which sends every arrow to Z.
We say that C is of homological type FPn when the constant
natural system Z is of type FPn (viewed as a module over FC).
In other words, there exists a sequence of natural systems Di such
that for every 1-cell w of C

· · ·
dn+1 // (Dn)w

dn // (Dn−1)w
dn−1 // · · · d1 // (D0)w

ε // Z // 0.

is an exact sequence and (Di)w is projective and finitely generated
for all i.

We also define homological invariants for right, left and bi-modules:
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Description of free natural systems generated by Σ

Let Σ be a (n, 1)-polygraph.
Recall that we have a mapping

[−] : Σ1−→ DΣ[Σ1]x

x 7−→ [x] = (1s(x), x, 1t(x)).

We extend this to Σ∗1 by induction on the size of u ∈ Σ∗1:

[1x] = 0 and [uv] = [u]v + u[v].

Similarly, for 1 < k ≤ n, a k-cell f ∈ Σ>k is associated to the
element [f ] of DΣ[Σk]f again by induction on its size:

[1u] = 0, [f−] = −[f ], [f ?i g] =

{
[f ]g + g[f ] if i = 0

[f ] + [g] if not.

These extensions are well defined.
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The Reidemeister-Fox-Squier complex (RFS)

Let Σ be a (n, 1)-polygraph.
For 1 ≤ k ≤ n, we define the k-th RFS boundary map of Σ:

δk : DΣ[Σk] −→ DΣ[Σk−1]

defined, on the generator [α]:

δk[α] =

{
(cl (α), 1)− (1, cl (α)) if k = 1

[s(α)]− [t(α)] if not.

By induction on the size of cells of Σ>, one proves that, for every
k-cell f in Σ>, with k ≥ 1, the following holds:

δk[f ] =

{
(cl (f), 1)− (1, cl (f)) if k = 1

[s(f)]− [t(f)] otherwise.

As a consequence, for every 1 ≤ k < n, we have

εδ1 = 0 and δkδk+1 = 0.

The Reidemeister-Fox-Squier (RFS) complex of Σ is denoted
by DΣ[Σ]:

Dcl (Σ)[Σn]
δn // Dcl (Σ)[Σn−1]

δn−1 // · · ·

· · · δ2 // Dcl (Σ)[Σ1]
δ1 // Dcl (Σ)[Σ0]

ε // Z // 0.
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Contracting homotopies from strategies

Fix a partial polygraphic resolution Σ of length n ≥ 1 of a category C.
Since Σ is acyclic, it admits a left normalisation strategy σ.

We specify the corresponding morphisms of natural systems:

(σ−1)w : Z → DC [Σ0]w
1 7→ (1, w)

(σ0)w : DC [Σ0]w → DC [Σ1]w
(u, v) 7→ [û]v

(σk)w : DC [Σk]w → DC [Σk+1]w
u[x]v 7→ [σûx]v

Lemma
For every k ∈ {1, . . . , n− 1}, every k-cell f of Σ> and every 1-cells u
and v of C such that ucl (f)v exists, we have:

σk(u[f ]v) = [σûf ]v.
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Lemma
For every k ∈ {1, . . . , n− 1}, every k-cell f of Σ> and every 1-cells u
and v of C such that ucl (f)v exists, we have:

σk(u[f ]v) = [σûf ]v.
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Convergence and homology

Theorem
If Σ is a (partial) polygraphic resolution (of length n) of a category C,
then the Reidemeister-Fox-Squier complex DC [Σ] is a free (partial)
resolution (of length n) of the constant natural system Z on C.

Corollary
The property FDTn implies the property FPn, for every 0 ≤ n ≤ ∞.

Corollary
If a category admits a finite and convergent presentation, then it is of
homological type FP∞.
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Conclusion
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Thank you
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