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Introduction

We have seen that convergence implies decidability of the word
problem. This leads us to ask:

Does a finitely generated monoid with a decidable word problem always
admit a finite convergent presentation?

@ There are two approaches. Let M be a monoid ;
e Homology : M has homological type F'P3 when there exists an
exact sequence

P P, P Py Z 0

of modules over M with P; is projective and finitely generated.
e Homotopy : M is of finite derivation type F'DTj if it admits a
finite presentation with a finite homotopy basis.

e We have the following implications:

3 a finite convergent pres. FDT5 FPs
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We want to extend these ideas to p-categories.
o Polygraphic resolutions :
e Relate cofibrance in the model structure on coCat to homotopy
bases in every dimension, i.e. acyclicity.
e Homotopy :
o Strategies : higher dimensional "base-points" via rewriting.
e These are used to construct polygraphic resolutions, i.e. cofibrant
replacements in the folk model structure of coCat.
o Extends the finiteness condition F'DT';s.
e Homology :
e Abelianisation of homotopy produces a homological invariant
extending F Ps.
e Relate polygraphic resolutions to resolutions by modules.
e We obtain a rich interplay between computational and
algebraico-topological properties.
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Polygraphic resolutions
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(n, p)-Polygraphs

We denote by n either a natural number or oo.

e For p < n, an (n,p)-category is an n-category whose k-cells are
invertible for every k > p.

e A model structure on (0o, p)-categories is inherited from
oo-categories via the adjunction:

e For p < n, an (n,p)-polygraph is data 3 consisting of:
o a p-polygraph (Xo,...,%,),
o for every p < k < n, a cellular extension ¥j41 of the free
(k, p)-category
ST = S(Sp) - (S0):
The free (00, p)-categories generated by such structures are
cofibrant.
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Polygraphic resolutions

Let C be a p-category.

e A polygraphic resolution of C is an acyclic (oo, p)-polygraph 3 such
that ¥ = C.

o If p < n < o0, a partial polygraphic resolution of length n is an
acyclic (n, p)-polygraph ¥ such that ¥ is isomorphic to C.

Let X be a polygraphic resolution of C. The canonical projection ©.T—C
s a coftbrant approximation of C.

C is said to be...

e of finite co-derivation type (FDT ) when it admits a finite
polygraphic resolution,

e of finite n-derivation type (FDT),) when it admits a finite partial
polygraphic resolution of length n.
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[llustration




Normalisation strategies and homotopy
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Homotopy via rewriting

@ In general, there are many choices of how to rewrite a given object;
how do we know which path to take?

e For a convergent rewriting system, following any path from an
object u, we arrive at the normal form 4.

@ Strategies generalise this notion of normalisation to paths, paths
between paths, ...
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Homotopy via rewriting

e Strategies generalise this notion of normalisation to paths, paths
between paths, ...
@ These consist of
e a notion of normal form in every dimension,
e a reduction from every cell to its normal form.
@ This information exhibits a homotopy from any k-cell to a “base
point” in each hom-set.
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Normalisation strategies

Let ¥ be an (n, p)-polygraph.
@ A section of ¥ is the choice of a representative p-cell 4 : z — y in
YT for every p-cell u:  — y of 3, such that

~

1, =1,

holds for every (p — 1)-cell z of . Not functorial!
e This choice satisfies

u=vinY <= 4=70in X"
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Normalisation strategies

Let ¥ be an (n, p)-polygraph.
@ Choose such a (non-functorial) section (/—\) : X — X7 of the
canonical projection 7 : X7 — 3.
o Extend the section by induction via f = O(f) *k—1 U;(f) for a k-cell
with k& > p.
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Normalisation strategies

Let ¥ be an (n, p)-polygraph.
@ Choose such a (non-functorial) section (/—\) : X — X7 of the
canonical projection 7 : X7 — 3.
o Extend the section by induction via f = O(f) *k—1 U;(f) for a k-cell
with k£ > p.
o A normalisation strategy for ¥ is a mapping o of every k-cell f of
YT, with p <k < n, toa (k+ 1)-cell

Uf A
f—=F
such that :
o for every k-cell f, with p < k <mn,
of = 1f
o for every pair (f,g) of i-composable k-cells, with p <i < k <n,

Ofxig = Of *iOg .
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[lustration: (oo, 1)-polygraphs
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[lustration: (oo, 1)-polygraphs
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[lustration: (oo, 1)-polygraphs

Lemma

Let ¥ be an (n,1)-polygraph. Left (resp. right) normalisation strategies
on X are in bijective correspondence with the families

Oag © Up — uAgZ) (resp. Opy : PU — qi;u)

of (k4 1)-cells, indexed by k-cells ¢ of X, for 1 < k <n, and by 1-cells
u of ¥ such that the composite k-cell ¢ (resp. ¢t) exists.
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Strategies and acyclicity

Let 3 be an (n,1)-polygraph. We have that

> is acyclic — Y. admits a strategy.
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Strategies and acyclicity

Let 3 be an (n,1)-polygraph. We have that

> is acyclic — Y. admits a strategy.

A 1-category C is F DT, if, and only if, there exists a finite
(n, 1)-polygraph presenting C which admits a normalisation strategy.
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Strategies and acyclicity

Let 3 be an (n,1)-polygraph. We have that

> is acyclic — Y. admits a strategy.

A 1-category C is F DT, if, and only if, there exists a finite
(n, 1)-polygraph presenting C which admits a normalisation strategy.

Now we want to relate convergence to the existence of a strategy. ..
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Reduced polygraphs and ordering

@ A 2-polygraph ¥ is reduced when, for every 2-cell ¢ : u = v in X,
the 1-cell w is a normal form for ¥ \ {¢} and v is a normal form
for ¥5.

For every (finite) convergent n-polygraph, there exists a (finite)
Tietze-equivalent, reduced and convergent n-polygraph.
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Reduced polygraphs and ordering

o We define an ordering < on rewrite rules with the same source :
o Let u a 1-cell of X*.
o For ¢ and v generating 2-cells of ¥, and rewriting steps

f=uvov and g = wipw',
such that s(f) = s(g) = u (a branching), we have
f=g <= wvisaprefixof w

e This is a total order when X is reduced.
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Canonical strategies: initialisation

Let ¥ be a reduced 2-polygraph.
e Let v a 1-cell of ¥* which is not a normal form.

@ Since X is reduced, there are a finite number of steps with source u:
Mi=fi2fo= 2 fior 2 fi=tpu

e Denote respectively by A, and p, the minimal and maximal
rewriting steps.
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Canonical strategies: initialisation

Let ¥ be a reduced 2-polygraph.

e Let v a 1-cell of ¥* which is not a normal form.

@ Since X is reduced, there are a finite number of steps with source u:

A== fo=2-- =2 fiii 2 fi=pu

e Denote respectively by A, and p, the minimal and maximal

rewriting steps.

o For a normal form @, we (must) have

oy — 141-

e On a reducible 1-cell u, set

Tu = Pu*1 Ot(r,):

Each results in a strategy defined by Noetherian induction.
The rightmost strategy o of 3 is defined by:

e Note that for every u, the 2-cell o, is an element of :*.
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Reduced critical branchings

Let X a reduced convergent 2-polygraph.
e What are the critical branchings of »7

e We conclude that a critical branching is of the form

(90, pus)

e When ¥ is finite, there are a finite number of critical branchings.
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@ The basis of generating confluences of 3 is the cellular extension
c2(X) of ¥ made of one 3-cell

for every critical branching b of X, where o is the rightmost
strategy.
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Basis of generating confluences: induction step

@ The basis of generating confluences of 3 is the cellular extension
c2(X) of ¥ made of one 3-cell

for every critical branching b of X, where o is the rightmost
strategy.

The rightmost normalisation strategy of 3 extends to a strategy

of ca(%).
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Basis of generating confluences: induction step

@ The basis of generating confluences of 3 is the cellular extension
c2(X) of ¥ made of one 3-cell

for every critical branching b of X, where o is the rightmost

strategy.

The rightmost normalisation strategy of 3 extends to a strategy

of ca(%).

Proposition
The (3,1)-polygraph ca(X) is acyclic.
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Basis of generating confluences: induction step

@ The basis of generating confluences of 3 is the cellular extension
c2(X) of ¥ made of one 3-cell

for every critical branching b of X, where o is the rightmost
strategy.

The rightmost normalisation strategy of 3 extends to a strategy

of ca(%).

A category with a finite convergent presentation is FDT'5. \
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In arbitrary dimensions

e An n-fold branching of ¥ is a family (f1,..., fn) of rewriting steps
of ¥ with the same source and such that f; <--- =2 f,.

o We define local, aspherical, Peiffer, overlapping, minimal and
critical n-fold branchings.

@ An n-fold critical branching b of ¥ must have shape

b = (Cﬁv Puﬁ)
where ¢ is a critical (n — 1)-fold branching of 3 with source wu.

o We again consider the cellular extension ¢, (X) of ¢, 1(X)" filling
every critical branching.
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In arbitrary dimensions

e An n-fold branching of ¥ is a family (f1,..., fn) of rewriting steps
of ¥ with the same source and such that f; <--- =2 f,.

o We define local, aspherical, Peiffer, overlapping, minimal and
critical n-fold branchings.

@ An n-fold critical branching b of ¥ must have shape

b = (Cﬁv Puﬁ)
where ¢ is a critical (n — 1)-fold branching of 3 with source wu.

o We again consider the cellular extension ¢, (%) of ¢, 1(X)T filling
every critical branching. We obtain the following:

Every convergent 2-polygraph ¥ extends to a Tietze-equivalent, acyclic
(00, 1)-polygraph coo(X), whose generating n-cells, for every n > 3, are
(indezed by) the critical (n — 1)-fold branchings of 3.
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In arbitrary dimensions

e An n-fold branching of ¥ is a family (f1,..., fn) of rewriting steps
of ¥ with the same source and such that f; <--- =2 f,.

o We define local, aspherical, Peiffer, overlapping, minimal and
critical n-fold branchings.

@ An n-fold critical branching b of ¥ must have shape

b = (Cﬁv Puﬁ)
where ¢ is a critical (n — 1)-fold branching of 3 with source wu.

o We again consider the cellular extension ¢, (%) of ¢, 1(X)T filling
every critical branching.

A category with a finite convergent presentation is F DT . \
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Abelianisation and homology
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s over monoids

Let M be a monoid.
o Recall that a module is an abelian group H equipped with an
external action of M:
o For every m € M, a morphism

m:H— H
h— m - h,

—_~—

such that m o m’ = (m/m).
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Modules over monoids

Let M be a monoid.
o A resolution of M is an exact sequence of modules P;

dn+1 dn dn—1 do

Pn Pnfl Pl < A 0.

where Z is the trivial M-module.
A resolution is partial of length n when In s.t. P; = 0 for i > n.
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Modules over monoids

Let M be a monoid.
o A resolution of M is an exact sequence of modules P;

dn+1 dn dnfl d2
. P, P, ..

P—-7 0.

where Z is the trivial M-module.
A resolution is partial of length n when In s.t. P; = 0 for i > n.

e M is of homological type F P, if there exists a resolution of Z by
finitely generated projective modules.
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Modules over monoids

Let M be a monoid.
o A resolution of M is an exact sequence of modules P;

dn+1 dn dn—1 do

P, P, P —=7 0.

where Z is the trivial M-module.
A resolution is partial of length n when In s.t. P; = 0 for i > n.

e M is of homological type F P, if there exists a resolution of Z by
finitely generated projective modules.
e What does this mean in terms of presentations?
o Generating elements of P, correspond to generators of M.
e Equations in P, are borders of free sums of generators of P;. These
generators correspond to relations.
e Equations between relations are similarly “resolved” by elements of
P, and so on...
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Modules over monoids

Let C be a category.
o A module M over C is a functor

M :C — Ab.

o This is generalised by the notion of natural system:
o The factorisation category FC of C consists of:

e A natural system D over C is a functor

D :FC— Ab
w— Dy,
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Free natural system generated by

Let C be a category and ¥ an (n, 1)-polygraph presenting C.
e Given a family X of 1-cells of C, we denote by D¢[X] the free
natural system on C generated by X, which is defined by

DelX] = @ ZFC(u,—).
ueX

o We define free natural systems generated by >:
o Dc[Xo] is generated by identities 1,,.

De[Xolw = ({(u,v) | uv = w}).

o For 1 < k < n, Dc[¥4] is generated by a copy of ¢ for every k-cell ¢
of ¥y, i.e.

De[Sklu= €D ZFC(6,-)

PES
= ({(u, 6,v) | upv = w}).
e The generator (u, ¢,v) is henceforth denoted by u[¢]|v.
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F P, and co. for categories

Let C be a category.
@ Denote by Z the natural system on C which sends every arrow to Z.
o We say that C is of homological type F' P, when the constant
natural system Z is of type F'P,, (viewed as a module over FC).
@ In other words, there exists a sequence of natural systems D; such
that for every 1-cell w of C

dn+ 1 dn

dp— d
— (Dn)w — (Dn—l)w > !

(Do) —> 7. 0.

is an exact sequence and (D;),, is projective and finitely generated
for all 4.
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F P, and co. for categories

Let C be a category.
@ Denote by Z the natural system on C which sends every arrow to Z.
o We say that C is of homological type F' P, when the constant
natural system Z is of type F'P,, (viewed as a module over FC).
@ In other words, there exists a sequence of natural systems D; such
that for every 1-cell w of C

dn+ 1 dn

dp— d
— (Dn)w — (Dn—l)w > !

(Do) —> 7. 0.

is an exact sequence and (D;),, is projective and finitely generated
for all 4.
e We also define homological invariants for right, left and bi-modules:
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Description of free natural systems generated by X

Let ¥ be a (n, 1)-polygraph.
@ Recall that we have a mapping

[—]: X1— DXz
r— (2] = (Ly(a), T, Ly(a))-
e We extend this to X7 by induction on the size of u € ¥7:
1] =0  and [uwv] = [u]v +uv].
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Description of free natural systems generated by X

Let ¥ be a (n, 1)-polygraph.
@ Recall that we have a mapping
[—] : 21—> Di[El]f
T [l’] = (1s(as)a$a 1t(w))

*

e We extend this to X7 by induction on the size of u € ¥7:
1] =0 and [uv] = [u]v + Tlv].
e Similarly, for 1 < k <mn, a k-cell f € Eg is associated to the
element [f] of Dg[X]; again by induction on its size:
- [flg+9lf] iti=0
[l =0, [f7]=-lfl,  [frgl= .
[f1+1lg]  if not.

@ These extensions are well defined.
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The Reidemeister-Fox-Squier complex (RFS)

Let ¥ be a (n, 1)-polygraph.
e For 1 < k <n, we define the k-th RFS boundary map of 3:

defined, on the generator [a]:

5 _{(cl(a),l)—(l,cz(a» if k=1
klo] = _
[s(a)] = [t(a)] if not.
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The Reidemeister-Fox-Squier complex (RFS)

Let ¥ be a (n, 1)-polygraph.
e For 1 < k <n, we define the k-th RFS boundary map of 3:

ok + Dg[Zk] — Dg[Ek1]
defined, on the generator [a/:
5 il — {(Cl(a)71)—(1,cl(a)) if k=1
kla] = _
[s(a)] — [t()] if not.

o The augmentation map € of ¥ is defined, for every pair (u,v) of
composable 1-cells of 3, by:

e(u,v) = 1.
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The Reidemeister-Fox-Squier complex (RFS)

Let ¥ be a (n, 1)-polygraph.
e By induction on the size of cells of £, one proves that, for every
k-cell fin X7, with k& > 1, the following holds:

(cl(f),1) = (1 el(f)) it k=1
) =
¢lf] {[s(f)] — [t(f)] otherwise.
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The Reidemeister-Fox-Squier complex (RFS)

Let ¥ be a (n, 1)-polygraph.
e By induction on the size of cells of £, one proves that, for every
k-cell fin X7, with k& > 1, the following holds:

(cl(f),1) = (1 el(f)) it k=1
) =
¢lf] {[s(f)] — [t(f)] otherwise.

@ As a consequence, for every 1 < k < n, we have

€1 =0 and 0r0k+1 = 0.
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The Reidemeister-Fox-Squier complex (RFS)

Let ¥ be a (n, 1)-polygraph.
e By induction on the size of cells of £, one proves that, for every
k-cell fin X7, with k& > 1, the following holds:

5ulf] — {(czm,l) —(Lel(f) k=1
[s(f)] = [t(f)] otherwise.
e As a consequence, for every 1 < k < n, we have
€01 =0 and 0r0k+1 = 0.
e The Reidemeister-Fox-Squier (RFS) complex of ¥ is denoted
by Ds[X]:

On Op—
D5y [En] == Doy [Snot] ———= -+

§ €
D sy [Z1] ——= D5 [So] ——Z ——0.
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Contracting homotopies from strategies

Fix a partial polygraphic resolution ¥ of length n > 1 of a category C.

@ Since Y is acyclic, it admits a left normalisation strategy o.
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Contracting homotopies from strategies

Fix a partial polygraphic resolution ¥ of length n > 1 of a category C.
@ Since Y is acyclic, it admits a left normalisation strategy o.

o We specify the corresponding morphisms of natural systems:

(U—l)w: 7 — Dc[zo]w (Uo)wi Dc[Zg]w — Dc[zl]w
1 (1,w) (u,v) — [G]v

(0k)w: De[Eklw — De[Skt]w
u[z]v = [oge]v
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Contracting homotopies from strategies

Fix a partial polygraphic resolution ¥ of length n > 1 of a category C.
@ Since Y is acyclic, it admits a left normalisation strategy o.

o We specify the corresponding morphisms of natural systems:

(O'_l)w: 7 — Dc[ZQ]w (Jo)w: DC[ZO]w — Dc[zl]w
1 (1,w) (u,v) — [G]v

(0k)w: De[Eklw — De[Skt]w
u[z]v = [oge]v

For every k € {1,...,n — 1}, every k-cell f of £ and every 1-cells u
and v of C such that ucl(f)v exists, we have:

ox(ulflv) = [oaf]v.
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Convergence and homology

If ¥ is a (partial) polygraphic resolution (of length n) of a category C,
then the Reidemeister-Fox-Squier complex D¢[X] is a free (partial)
resolution (of length n) of the constant natural system Z on C.
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Convergence and homology

If ¥ is a (partial) polygraphic resolution (of length n) of a category C,
then the Reidemeister-Fox-Squier complex D¢[X] is a free (partial)
resolution (of length n) of the constant natural system Z on C.

Cameron Calk (LIX)

Strategies and resolutions

18/02/2021



Convergence and homology

If ¥ is a (partial) polygraphic resolution (of length n) of a category C,
then the Reidemeister-Fox-Squier complex D¢[X] is a free (partial)
resolution (of length n) of the constant natural system Z on C.

The property F DT, implies the property F P, for every 0 < n < co. \
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Convergence and homology

If ¥ is a (partial) polygraphic resolution (of length n) of a category C,
then the Reidemeister-Fox-Squier complex D¢[X] is a free (partial)
resolution (of length n) of the constant natural system Z on C.

The property F DT, implies the property F P, for every 0 < n < co.

If a category admits a finite and convergent presentation, then it is of
homological type FP.
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Conclusion




Thank you
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