Strategies and Resolutions

Algebraic Rewriting Seminar

Cameron Calk

Laboratoire d'Informatique de l'École Polytechnique (LIX)

 18^{th} of February 2021

Introduction

We have seen that convergence implies decidability of the word problem. This leads us to ask:

Question

Does a finitely generated monoid with a decidable word problem always admit a finite convergent presentation?

- \bullet There are two approaches. Let ${\mathcal M}$ be a monoid ;
 - Homology : \mathcal{M} has homological type FP_3 when there exists an exact sequence

$$P_3 \longrightarrow P_2 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow \mathbb{Z} \longrightarrow 0$$

of modules over \mathcal{M} with P_i is projective and finitely generated.

- Homotopy : \mathcal{M} is of finite derivation type FDT_3 if it admits a finite presentation with a finite homotopy basis.
- We have the following implications:

$$\exists$$
 a finite convergent pres

$$FDT_3$$
 FP_3

Goals

We want to extend these ideas to p-categories.

- Polygraphic resolutions :
 - Relate cofibrance in the model structure on ∞ **Cat** to homotopy bases in every dimension, *i.e.* acyclicity.
- Homotopy :
 - Strategies : higher dimensional "base-points" via rewriting.
 - These are used to construct polygraphic resolutions, *i.e.* cofibrant replacements in the folk model structure of ∞ **Cat**.
 - Extends the finiteness condition FDT_3 .
- Homology :
 - Abelianisation of homotopy produces a homological invariant extending FP_3 .
 - Relate polygraphic resolutions to resolutions by modules.
- We obtain a rich interplay between computational and algebraico-topological properties.

Polygraphic resolutions

(n, p)-Polygraphs

We denote by n either a natural number or ∞ .

- For p ≤ n, an (n, p)-category is an n-category whose k-cells are invertible for every k > p.
- A model structure on (∞, p)-categories is inherited from ∞-categories via the adjunction:

- For $p \leq n$, an (n, p)-polygraph is data Σ consisting of:
 - a *p*-polygraph $(\Sigma_0, \ldots, \Sigma_p)$,
 - for every $p \le k < n$, a cellular extension Σ_{k+1} of the free (k, p)-category

 $\Sigma_k^{\top} = \Sigma_p^*(\Sigma_{p+1})\cdots(\Sigma_k).$

The free (∞, p) -categories generated by such structures are cofibrant.

Polygraphic resolutions

- Let \mathcal{C} be a *p*-category.
 - A polygraphic resolution of C is an acyclic (∞, p)-polygraph Σ such that Σ ≃ C.
 - If p < n < ∞, a partial polygraphic resolution of length n is an acyclic (n, p)-polygraph Σ such that Σ is isomorphic to C.

Theorem

Let Σ be a polygraphic resolution of C. The canonical projection $\Sigma^{\top} \twoheadrightarrow C$ is a cofibrant approximation of C.

- ${\cal C}$ is said to be. . .
 - of finite ∞ -derivation type (FDT_{∞}) when it admits a finite polygraphic resolution,
 - of finite n-derivation type (FDT_n) when it admits a finite partial polygraphic resolution of length n.

Normalisation strategies and homotopy

Homotopy via rewriting

- In general, there are many choices of how to rewrite a given object; how do we know which path to take?
- For a convergent rewriting system, following any path from an object u, we arrive at the normal form \hat{u} .

• Strategies generalise this notion of normalisation to paths, paths between paths, ...

- Strategies generalise this notion of normalisation to paths, paths between paths, ...
- These consist of
 - a notion of normal form in every dimension,
 - a reduction from every cell to its normal form.
- This information exhibits a homotopy from any k-cell to a "base point" in each hom-set.

Normalisation strategies

Let Σ be an (n, p)-polygraph.

• A section of Σ is the choice of a representative *p*-cell $\hat{u} : x \to y$ in Σ^{\top} for every *p*-cell $u : x \to y$ of $\overline{\Sigma}$, such that

$\widehat{1_x} = 1_x$

holds for every (p-1)-cell x of $\overline{\Sigma}$. Not functorial!

• This choice satisfies

$$\overline{u} = \overline{v} \text{ in } \overline{\Sigma} \quad \iff \quad \hat{u} = \hat{v} \text{ in } \Sigma^*$$

Normalisation strategies

Let Σ be an (n, p)-polygraph.

- Choose such a (non-functorial) section $\widehat{(-)}: \overline{\Sigma} \to \Sigma_p^*$ of the canonical projection $\pi: \Sigma^\top \to \overline{\Sigma}$.
- Extend the section by induction via $\hat{f} = \sigma_{s(f)} \star_{k-1} \sigma_{t(f)}^{-}$ for a k-cell with k > p.

Normalisation strategies

Let Σ be an (n, p)-polygraph.

- Choose such a (non-functorial) section $\widehat{(-)}: \overline{\Sigma} \to \Sigma_p^*$ of the canonical projection $\pi: \Sigma^\top \to \overline{\Sigma}$.
- Extend the section by induction via $\hat{f} = \sigma_{s(f)} \star_{k-1} \sigma_{t(f)}^-$ for a k-cell with k > p.
- A normalisation strategy for Σ is a mapping σ of every k-cell f of Σ^{\top} , with $p \leq k < n$, to a (k + 1)-cell

$$f \xrightarrow{\sigma_f} \hat{f}$$

such that :

• for every k-cell f, with $p \leq k < n$,

$$\sigma_{\hat{f}} = 1_{\hat{f}}$$

• for every pair (f, g) of *i*-composable *k*-cells, with $p \leq i < k < n$,

$$\sigma_{f\star_i g} = \sigma_f \star_i \sigma_g .$$

Cameron Calk (LIX)

Cameron Calk (LIX)

Lemma

Let Σ be an (n, 1)-polygraph. Left (resp. right) normalisation strategies on Σ are in bijective correspondence with the families

$$\sigma_{\hat{u}\phi} : \hat{u}\phi \to \hat{u\phi}$$
 (resp. $\sigma_{\phi\hat{u}} : \phi\hat{u} \to \phi\hat{u}$)

of (k+1)-cells, indexed by k-cells ϕ of Σ , for $1 \leq k < n$, and by 1-cells u of $\overline{\Sigma}$ such that the composite k-cell $\overline{u}\phi$ (resp. $\phi\overline{u}$) exists.

Strategies and acyclicity

Theorem

Let Σ be an (n, 1)-polygraph. We have that

 Σ is acyclic $\iff \Sigma$ admits a strategy.

Strategies and acyclicity

Theorem

Let Σ be an (n, 1)-polygraph. We have that

 Σ is acyclic \iff Σ admits a strategy.

Corollary

A 1-category C is FDT_n if, and only if, there exists a finite (n, 1)-polygraph presenting C which admits a normalisation strategy.

Let Σ be an (n, 1)-polygraph. We have that

 Σ is acyclic \iff Σ admits a strategy.

Corollary

A 1-category C is FDT_n if, and only if, there exists a finite (n, 1)-polygraph presenting C which admits a normalisation strategy.

Now we want to relate convergence to the existence of a strategy...

Reduced polygraphs and ordering

• A 2-polygraph Σ is reduced when, for every 2-cell $\phi : u \Rightarrow v$ in Σ , the 1-cell u is a normal form for $\Sigma_2 \setminus \{\phi\}$ and v is a normal form for Σ_2 .

Lemma

For every (finite) convergent n-polygraph, there exists a (finite) Tietze-equivalent, reduced and convergent n-polygraph.

Reduced polygraphs and ordering

- We define an ordering \preceq on rewrite rules with the same source :
 - Let u a 1-cell of Σ^* .
 - For ϕ and ψ generating 2-cells of Σ , and rewriting steps

 $f = v\phi v'$ and $g = w\psi w'$,

such that s(f) = s(g) = u (a branching), we have

 $f \preceq g \quad \iff \quad v \text{ is a prefix of } w$

• This is a total order when Σ is reduced.

Canonical strategies: initialisation

Let Σ be a reduced 2-polygraph.

- Let u a 1-cell of Σ^* which is not a normal form.
- Since Σ is reduced, there are a finite number of steps with source u:

 $\lambda_u := f_1 \preceq f_2 \preceq \cdots \preceq f_{l-1} \preceq f_l =: \rho_u$

• Denote respectively by λ_u and ρ_u the minimal and maximal rewriting steps.

Canonical strategies: initialisation

Let Σ be a reduced 2-polygraph.

- Let u a 1-cell of Σ^* which is not a normal form.
- Since Σ is reduced, there are a finite number of steps with source u:

 $\lambda_u := f_1 \preceq f_2 \preceq \cdots \preceq f_{l-1} \preceq f_l =: \rho_u$

- Denote respectively by λ_u and ρ_u the minimal and maximal rewriting steps.
- Each results in a strategy defined by Noetherian induction.
- The rightmost strategy σ of Σ is defined by:
 - For a normal form \hat{u} , we (must) have

$$\sigma_{\hat{u}} = 1_{\hat{u}}.$$

• On a reducible 1-cell u, set

$$\sigma_u = \rho_u \star_1 \sigma_{t(\lambda_u)}.$$

• Note that for every u, the 2-cell σ_u is an element of Σ^* .

Cameron Calk (LIX)

Reduced critical branchings

Let Σ a reduced convergent 2-polygraph.

• What are the critical branchings of Σ ?

• We conclude that a critical branching is of the form $(\phi \hat{v}, \rho_{u\hat{v}})$

• When Σ is finite, there are a finite number of critical branchings.

Cameron Calk (LIX)

The basis of generating confluences of Σ is the cellular extension c₂(Σ) of Σ^T made of one 3-cell

for every critical branching b of Σ , where σ is the rightmost strategy.

• The basis of generating confluences of Σ is the cellular extension $c_2(\Sigma)$ of Σ^{\top} made of one 3-cell

for every critical branching b of Σ , where σ is the rightmost strategy.

Lemma

The rightmost normalisation strategy of Σ extends to a strategy of $c_2(\Sigma)$.

• The basis of generating confluences of Σ is the cellular extension $c_2(\Sigma)$ of Σ^{\top} made of one 3-cell

for every critical branching b of Σ , where σ is the rightmost strategy.

Lemma

The rightmost normalisation strategy of Σ extends to a strategy of $c_2(\Sigma)$.

Proposition

The (3,1)-polygraph $c_2(\Sigma)$ is acyclic.

• The basis of generating confluences of Σ is the cellular extension $c_2(\Sigma)$ of Σ^{\top} made of one 3-cell

for every critical branching b of Σ , where σ is the rightmost strategy.

Lemma

The rightmost normalisation strategy of Σ extends to a strategy of $c_2(\Sigma)$.

Corollary

A category with a finite convergent presentation is FDT_3 .

Cameron Calk (LIX)

Strategies and resolutions

In arbitrary dimensions

- An *n*-fold branching of Σ is a family (f_1, \ldots, f_n) of rewriting steps of Σ with the same source and such that $f_1 \preceq \cdots \preceq f_n$.
- We define local, aspherical, Peiffer, overlapping, minimal and critical *n*-fold branchings.
- An *n*-fold critical branching b of Σ must have shape

$b = \left(c\hat{v}, \, \rho_{u\hat{v}} \right)$

where c is a critical (n-1)-fold branching of Σ with source u.

• We again consider the cellular extension $c_n(\Sigma)$ of $c_{n-1}(\Sigma)^{\top}$ filling every critical branching.

In arbitrary dimensions

- An *n*-fold branching of Σ is a family (f_1, \ldots, f_n) of rewriting steps of Σ with the same source and such that $f_1 \preceq \cdots \preceq f_n$.
- We define local, aspherical, Peiffer, overlapping, minimal and critical *n*-fold branchings.
- An *n*-fold critical branching b of Σ must have shape

 $b = (c\hat{v}, \rho_{u\hat{v}})$

where c is a critical (n-1)-fold branching of Σ with source u.

• We again consider the cellular extension $c_n(\Sigma)$ of $c_{n-1}(\Sigma)^{\top}$ filling every critical branching. We obtain the following:

Theorem

Every convergent 2-polygraph Σ extends to a Tietze-equivalent, acyclic $(\infty, 1)$ -polygraph $c_{\infty}(\Sigma)$, whose generating n-cells, for every $n \geq 3$, are (indexed by) the critical (n-1)-fold branchings of Σ .

In arbitrary dimensions

- An *n*-fold branching of Σ is a family (f_1, \ldots, f_n) of rewriting steps of Σ with the same source and such that $f_1 \preceq \cdots \preceq f_n$.
- We define local, aspherical, Peiffer, overlapping, minimal and critical *n*-fold branchings.
- An *n*-fold critical branching b of Σ must have shape

$b = \left(c\hat{v}, \, \rho_{u\hat{v}} \right)$

where c is a critical (n-1)-fold branching of Σ with source u.

• We again consider the cellular extension $c_n(\Sigma)$ of $c_{n-1}(\Sigma)^{\top}$ filling every critical branching.

Corollary

A category with a finite convergent presentation is FDT_{∞} .

Abelianisation and homology

Let \mathcal{M} be a monoid.

- Recall that a *module* is an abelian group H equipped with an external action of \mathcal{M} :
 - For every $m \in \mathcal{M}$, a morphism

$$\begin{split} \tilde{m} : H \longrightarrow H \\ h \longmapsto m \cdot h, \end{split}$$

such that $\tilde{m} \circ \tilde{m}' = (\widetilde{m'm})$.

Let \mathcal{M} be a monoid.

• A resolution of \mathcal{M} is an exact sequence of modules P_i

$$\cdots \xrightarrow{d_{n+1}} P_n \xrightarrow{d_n} P_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_2} P_1 \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0.$$

where \mathbb{Z} is the trivial \mathcal{M} -module.

A resolution is partial of length n when $\exists n \text{ s.t. } P_i = 0 \text{ for } i > n$.

Let \mathcal{M} be a monoid.

• A resolution of \mathcal{M} is an exact sequence of modules P_i

 $\cdots \xrightarrow{d_{n+1}} P_n \xrightarrow{d_n} P_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_2} P_1 \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0.$

where \mathbb{Z} is the trivial \mathcal{M} -module. A resolution is *partial of length* n when $\exists n$ s.t. $P_i = 0$ for i > n.

• \mathcal{M} is of homological type FP_n if there exists a resolution of \mathbb{Z} by finitely generated projective modules.

Let \mathcal{M} be a monoid.

• A resolution of \mathcal{M} is an exact sequence of modules P_i

 $\cdots \xrightarrow{d_{n+1}} P_n \xrightarrow{d_n} P_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_2} P_1 \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0.$

where \mathbb{Z} is the trivial \mathcal{M} -module.

A resolution is partial of length n when $\exists n \text{ s.t. } P_i = 0 \text{ for } i > n$.

- \mathcal{M} is of homological type FP_n if there exists a resolution of \mathbb{Z} by finitely generated projective modules.
- What does this mean in terms of presentations?
 - Generating elements of P_0 correspond to generators of \mathcal{M} .
 - Equations in P_0 are borders of free sums of generators of P_1 . These generators correspond to relations.
 - Equations between relations are similarly "resolved" by elements of P_2 , and so on...

Let \mathcal{C} be a category.

• A module M over \mathcal{C} is a functor

 $M: \mathcal{C} \longrightarrow \mathsf{Ab}.$

- This is generalised by the notion of *natural system*:
 - The factorisation category FC of C consists of:

• A natural system D over $\mathcal C$ is a functor

 $D: F\mathcal{C} \longrightarrow \mathsf{Ab}$ $w \longmapsto D_w$

Free natural system generated by Σ

Let \mathcal{C} be a category and Σ an (n, 1)-polygraph presenting \mathcal{C} .

• Given a family X of 1-cells of C, we denote by $D_{\mathcal{C}}[X]$ the free natural system on C generated by X, which is defined by

$$D_{\mathcal{C}}[X] = \bigoplus_{u \in X} \mathbb{Z}F\mathcal{C}(u, -).$$

• We define free natural systems generated by Σ :

• $D_{\mathcal{C}}[\Sigma_0]$ is generated by identities 1_u .

 $D_{\mathcal{C}}[\Sigma_0]_w = \langle \{(u,v) \mid uv = w\} \rangle.$

For 1 ≤ k < n, D_C[Σ_k] is generated by a copy of φ for every k-cell φ of Σ_k, *i.e.*

$$D_{\mathcal{C}}[\Sigma_k]_w = \bigoplus_{\phi \in \Sigma_k} \mathbb{Z}F\mathcal{C}(\overline{\phi}, -)$$
$$= \langle \{(u, \phi, v) \mid u\overline{\phi}v = w\} \rangle.$$

• The generator (u, ϕ, v) is henceforth denoted by $u[\phi]v$.

FP_n and co. for categories

Let \mathcal{C} be a category.

- Denote by \mathbb{Z} the natural system on \mathcal{C} which sends every arrow to \mathbb{Z} .
- We say that C is of homological type FP_n when the constant natural system \mathbb{Z} is of type FP_n (viewed as a module over FC).
- In other words, there exists a sequence of natural systems D_i such that for every 1-cell w of C

$$\cdots \xrightarrow{d_{n+1}} (D_n)_w \xrightarrow{d_n} (D_{n-1})_w \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_1} (D_0)_w \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0.$$

is an exact sequence and $(D_i)_w$ is projective and finitely generated for all *i*.

FP_n and co. for categories

Let \mathcal{C} be a category.

- Denote by \mathbb{Z} the natural system on \mathcal{C} which sends every arrow to \mathbb{Z} .
- We say that C is of homological type FP_n when the constant natural system \mathbb{Z} is of type FP_n (viewed as a module over FC).
- In other words, there exists a sequence of natural systems D_i such that for every 1-cell w of C

$$\cdots \xrightarrow{d_{n+1}} (D_n)_w \xrightarrow{d_n} (D_{n-1})_w \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_1} (D_0)_w \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0.$$

is an exact sequence and $(D_i)_w$ is projective and finitely generated for all *i*.

• We also define homological invariants for right, left and bi-modules:

Description of free natural systems generated by Σ

Let Σ be a (n, 1)-polygraph.

• Recall that we have a mapping

$$\begin{split} [-] : \Sigma_1 &\longrightarrow D_{\overline{\Sigma}}[\Sigma_1]_{\overline{x}} \\ & x \longmapsto [x] = (1_{s(x)}, x, 1_{t(x)}). \end{split}$$

• We extend this to Σ_1^* by induction on the size of $u \in \Sigma_1^*$:

 $[1_x] = 0$ and $[uv] = [u]\overline{v} + \overline{u}[v].$

Description of free natural systems generated by Σ

- Let Σ be a (n, 1)-polygraph.
 - Recall that we have a mapping

$$\begin{split} [-] : \Sigma_1 &\longrightarrow D_{\overline{\Sigma}}[\Sigma_1]_{\overline{x}} \\ & x \longmapsto [x] = (1_{s(x)}, x, 1_{t(x)}). \end{split}$$

• We extend this to Σ_1^* by induction on the size of $u \in \Sigma_1^*$:

 $[1_x] = 0$ and $[uv] = [u]\overline{v} + \overline{u}[v].$

Similarly, for 1 < k ≤ n, a k-cell f ∈ Σ_k[⊤] is associated to the element [f] of D_Σ[Σ_k]_f again by induction on its size:

 $[1_u] = 0, \qquad [f^-] = -[f], \qquad [f \star_i g] = \begin{cases} [f]\overline{g} + \overline{g}[f] & \text{if } i = 0\\ [f] + [g] & \text{if not.} \end{cases}$

• These extensions are well defined.

Let Σ be a (n, 1)-polygraph.

• For $1 \leq k \leq n$, we define the *k*-th RFS boundary map of Σ :

 $\delta_k : D_{\overline{\Sigma}}[\Sigma_k] \longrightarrow D_{\overline{\Sigma}}[\Sigma_{k-1}]$

defined, on the generator $[\alpha]$:

$$\delta_k[\alpha] = \begin{cases} (cl(\alpha), 1) - (1, cl(\alpha)) & \text{if } k = 1\\ [s(\alpha)] - [t(\alpha)] & \text{if not.} \end{cases}$$

Let Σ be a (n, 1)-polygraph.

• For $1 \leq k \leq n$, we define the *k*-th RFS boundary map of Σ :

 $\delta_k : D_{\overline{\Sigma}}[\Sigma_k] \longrightarrow D_{\overline{\Sigma}}[\Sigma_{k-1}]$

defined, on the generator $[\alpha]$:

$$\delta_k[\alpha] = \begin{cases} (cl(\alpha), 1) - (1, cl(\alpha)) & \text{if } k = 1\\ [s(\alpha)] - [t(\alpha)] & \text{if not.} \end{cases}$$

• The augmentation map ϵ of Σ is defined, for every pair (u, v) of composable 1-cells of $\overline{\Sigma}$, by:

 $\epsilon(u,v) = 1.$

Let Σ be a (n, 1)-polygraph.

• By induction on the size of cells of Σ^{\top} , one proves that, for every k-cell f in Σ^{\top} , with $k \ge 1$, the following holds:

$$\delta_k[f] = \begin{cases} (cl(f), 1) - (1, cl(f)) & \text{if } k = 1\\ [s(f)] - [t(f)] & \text{otherwise} \end{cases}$$

Let Σ be a (n, 1)-polygraph.

• By induction on the size of cells of Σ^{\top} , one proves that, for every k-cell f in Σ^{\top} , with $k \ge 1$, the following holds:

$$\delta_k[f] = \begin{cases} (cl(f), 1) - (1, cl(f)) & \text{if } k = 1\\ [s(f)] - [t(f)] & \text{otherwise} \end{cases}$$

• As a consequence, for every $1 \le k < n$, we have

$$\epsilon \delta_1 = 0$$
 and $\delta_k \delta_{k+1} = 0.$

Let Σ be a (n, 1)-polygraph.

• By induction on the size of cells of Σ^{\top} , one proves that, for every k-cell f in Σ^{\top} , with $k \ge 1$, the following holds:

$$\delta_k[f] = \begin{cases} (cl(f), 1) - (1, cl(f)) & \text{if } k = 1\\ [s(f)] - [t(f)] & \text{otherwise} \end{cases}$$

• As a consequence, for every $1 \le k < n$, we have

 $\epsilon \delta_1 = 0$ and $\delta_k \delta_{k+1} = 0.$

 The Reidemeister-Fox-Squier (RFS) complex of Σ is denoted by D_Σ[Σ]:

$$D_{cl(\Sigma)}[\Sigma_n] \xrightarrow{\delta_n} D_{cl(\Sigma)}[\Sigma_{n-1}] \xrightarrow{\delta_{n-1}} \cdots$$

$$\cdots \xrightarrow{\delta_2} D_{cl(\Sigma)}[\Sigma_1] \xrightarrow{\delta_1} D_{cl(\Sigma)}[\Sigma_0] \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0.$$

Contracting homotopies from strategies

Fix a partial polygraphic resolution Σ of length $n \geq 1$ of a category \mathcal{C} .

• Since Σ is acyclic, it admits a left normalisation strategy σ .

Contracting homotopies from strategies

Fix a partial polygraphic resolution Σ of length $n \geq 1$ of a category \mathcal{C} .

- Since Σ is acyclic, it admits a left normalisation strategy σ .
- We specify the corresponding morphisms of natural systems:

$$\begin{aligned} (\sigma_{-1})_w : & \mathbb{Z} \to D_{\mathcal{C}}[\Sigma_0]_w \\ & 1 \mapsto (1, w) \end{aligned} \qquad (\sigma_0)_w : & D_{\mathcal{C}}[\Sigma_0]_w \to D_{\mathcal{C}}[\Sigma_1]_w \\ & (u, v) \mapsto [\hat{u}]v \end{aligned}$$

$$(\sigma_k)_w: \quad D_{\mathcal{C}}[\Sigma_k]_w \to D_{\mathcal{C}}[\Sigma_{k+1}]_w \\ u[x]v \mapsto [\sigma_{\hat{u}x}]v$$

Contracting homotopies from strategies

Fix a partial polygraphic resolution Σ of length $n \geq 1$ of a category \mathcal{C} .

- Since Σ is acyclic, it admits a left normalisation strategy σ .
- We specify the corresponding morphisms of natural systems:

$$(\sigma_{-1})_w : \mathbb{Z} \to D_{\mathcal{C}}[\Sigma_0]_w \qquad (\sigma_0)_w : D_{\mathcal{C}}[\Sigma_0]_w \to D_{\mathcal{C}}[\Sigma_1]_w 1 \mapsto (1, w) \qquad (u, v) \mapsto [\hat{u}]v$$

$$(\sigma_k)_w: \quad D_{\mathcal{C}}[\Sigma_k]_w \to D_{\mathcal{C}}[\Sigma_{k+1}]_w \\ u[x]v \mapsto [\sigma_{\hat{u}x}]v$$

Lemma

For every $k \in \{1, ..., n-1\}$, every k-cell f of Σ^{\top} and every 1-cells u and v of C such that ucl(f)v exists, we have:

$$\sigma_k(u[f]v) = [\sigma_{\hat{u}f}]v.$$

Cameron Calk (LIX)

If Σ is a (partial) polygraphic resolution (of length n) of a category C, then the Reidemeister-Fox-Squier complex $D_{\mathcal{C}}[\Sigma]$ is a free (partial) resolution (of length n) of the constant natural system \mathbb{Z} on C.

If Σ is a (partial) polygraphic resolution (of length n) of a category C, then the Reidemeister-Fox-Squier complex $D_{\mathcal{C}}[\Sigma]$ is a free (partial) resolution (of length n) of the constant natural system \mathbb{Z} on C.

If Σ is a (partial) polygraphic resolution (of length n) of a category C, then the Reidemeister-Fox-Squier complex $D_{\mathcal{C}}[\Sigma]$ is a free (partial) resolution (of length n) of the constant natural system \mathbb{Z} on C.

Corollary

The property FDT_n implies the property FP_n , for every $0 \le n \le \infty$.

If Σ is a (partial) polygraphic resolution (of length n) of a category C, then the Reidemeister-Fox-Squier complex $D_{\mathcal{C}}[\Sigma]$ is a free (partial) resolution (of length n) of the constant natural system \mathbb{Z} on C.

Corollary

The property FDT_n implies the property FP_n , for every $0 \le n \le \infty$.

Corollary

If a category admits a finite and convergent presentation, then it is of homological type FP_{∞} .

Conclusion

Cameron Calk (LIX)

Thank you