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Historical context

Broadly speaking, rewriting theory is a constructive, directed
approach to the study of equivalences.

Origins in combinatorial algebra.

In 1914, Thue considered transformation rules on combinatorial

objects such as graphs, strings, . . .

The word problem was the first main question in rewriting theory:

Question
Given two objects, can one be transformed into the other via a (finite)
application of the transformation rules?

The decidability of this question was only resolved in 1947 by Post

and Markov independently.

Rewriting has since found a variety of applications:
Theoretical computer science:

proof theory, language theory, programming, . . .
Algebra

commutative algebra, homotopical and homological algebra, Lie
algebras, higher categories, . . .
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Abstract rewriting

Many of the central ideas of rewriting theory can be expressed in the
setting of abstract rewriting:

We have two ingredients:
a set X of objects.

a binary relation R ✓ X ⇥X.

Such data represents an abstract rewriting system.

In this mini-course we will
recall basic terminology from abstract rewriting,

formalise the word problem in this context,

recall unicity, i.e. confluence, properties and their equivalences,

recall reachability, i.e. termination, and its role.

We will present both geometric and algebraic interpretations.

Afterwards, Benjamin will go on to discuss string rewriting
systems.
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Abstract rewriting systems

So what is an abstract rewriting system (ARS)?
Consists of a set X and

a rewrite relation ! ✓ X ⇥X
for (x, y) 2 !, we write x! y ; y is a one-step reduct of x.

the converse relation is denoted by  .

We consider reduction sequences, i.e. equalities or finite
sequences of steps:

x ⌘ x or x ⌘ x0 ! x1 ! · · ·! xn�1 ! xn ⌘ y

and say that x reduces to y, denoted by x
⇤�! y.

We also consider zigzag sequences, i.e.

x ⌘ x0
⇤ � x1

⇤�! · · · ⇤ � xn�1
⇤�! xn ⌘ y

and say that x is equivalent to y, denoted by x
⇤ ! y.

Goal: capture the equivalence relation via the rewrite relation.
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Terminology

The composition of relations is defined by

x!a ·!b z () 9y such that x!a y and y !b z,

the identity relation being denoted by !0:= {(x, x) , x 2 X}.
We define !n := ! ·!n�1 for any n � 1.
The transitive closure of ! is defined by +! := [n�1 !n.
The reflexive, transitive closure of ! is defined by

⇤�! :=
+! [ !0

and thus contains all reduction sequences of !.
the symmetric, reflexive, transitive closure of ! is defined by

⇤ ! := ( !)⇤ = ( [ !)⇤

and thus contains all of zigzag sequences of !.
Cameron Calk (LIX) Abstract Rewriting 14/01/2021 5 / 16

= U -
u

MO



Abstract rewriting systems

These notions can be interpreted in (at least) two ways:

Algebraically: relation algebras (Kleene algebras)

(P(X ⇥X), ·, !0, [, ;, (�)⇤)

Geometrically: directed graphs (1-polygraphs)

V E
t

oo

s
oo

The word problem in the context of an ARS is stated as follows:

Question
Given x and y in X, do we have x

⇤ ! y?

We will see that relations ! which are confluent and terminating
admit decidable word problems.
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Example: N2

Consider the set X of free words on the alphabet {x, y}.
Let ! be the binary relation on X defined by

uyxv ! uxyv 8u, v 2 X.

The equivalence generated by ! is such that X/
⇤ ! ⇠= N2:

[w] 7�! (n,m),

where n (resp. m) is the number of occurrences of x (resp. y) in w.
A priori, we must look at all zigzag sequences to understand the
quotient. . .
Reduction sequences move occurrences of x to the left and
occurrences of y to the right.
This directedness will allow us to proceed as follows:

Existence: reduce each w 2 X to a terminal element ŵ.

Unicity: show that the element ŵ is unique.
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Branchings and confluences

a.k.a. disagreements and agreements. . .
A local branching of ! is an element of  ·!

·

����

x y

(x, y) 2  ·!

A branching of ! is an element of ⇤ � · ⇤�!:
·
⇤
��

⇤
��

x y

(x, y) 2 ⇤ � · ⇤�!

A confluence of ! is an element of ⇤�! · ⇤ �
x

⇤
��

y

⇤
��·

(x, y) 2 ⇤�! · ⇤ �
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Confluence properties : unicity

We say that ! is . . .
locally confluent if every local branching is confluent, i.e.

·
$$zz

x

⇤ %%

y

⇤zz·

 ·! ✓ ⇤�! · ⇤ �

Church-Rosser if every zigzag is confluent, i.e.

x ⌘ x0

⇤
$$

oo // · · · oo // xn ⌘ y

⇤
zz·

⇤ ! ✓ ⇤�! · ⇤ �

Existential quantification on the confluences is given by the
inclusion ✓.
These properties express coherence of the ARS.
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Coherence via branchings

Theorem (Churh-Rosser)
Let (X,!) be an abstract rewriting system. Then

! is confluent () ! is Church-Rosser.

The proof is by induction on the length l of a zigzag sequence:

We have reduced the problem from zigzags to branchings.
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Normalization and termination : existence

An element x 2 X is a normal form, or irreducible, for ! if

8y 2 X, ¬(x! y).

We say that ! is normalising if

8x 2 X, 9 x0 such that x
⇤�! x0 and x0 is a normal form.

We say that ! is terminating, or Noetherian, if all reduction
sequences are of finite length.
For every A ✓ X, let ⌃!(A) := {x 2 X | 9a 2 A s.t. x! a}.
An algebraic characterisation of termination is the following:

8A ✓ X, A ✓ ⌃!(A) ) A = ;

Termination implies normalisation, but the converse does not hold.

.
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Noetherian induction

The importance of being terminating. . .
Let (X, !) an ARS and P a property on elements of X.
The principle of Noetherian induction can be stated as follows:
if

8x 2 X,
h ⇣
8y 2 X, x

+! y ) P(y)
⌘
) P(x)

i
,

then P(x) holds for all x 2 X.
We can use this principle when dealing with terminating ARS’s:

Proposition
If ! is terminating if, and only if, the principle of Noetherian
induction holds.

! is convergent when it is both terminating and confluent.
In that case, every x 2 X admits a unique normal form which will
be denoted by x̂.
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From local to global

Theorem (Newman’s lemma)
Let (X,!) be a convergent abstract rewriting system. Then

! is locally confluent () ! is confluent

The proof is by Noetherian induction:

We have reduced the problem of unicity from branchings to local
branchings.
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Convergence and the word problem

Now that we have seen the fundamental definitions and results of
abstract rewriting, let’s get back to the word problem:

Question
Given x and y in X, do we have x

⇤ ! y?

If (X,!) is a normalising and confluent ARS, then

x
⇤ ! y () x̂ ⌘ ŷ.

So if the normal forms are computable and the identity ⌘ on X is
decidable, so is the word problem!
When ! terminates (and satisfies a finiteness condition. . . ) we
can compute normal forms. This gives the following result:

Proposition
The word problem associated to a convergent ARS is decidable.
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Presentation of N2

.
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Time for strings!
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