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From Grobner bases to linear polygraphs

> Last week was presented the approach of linear rewriting using the theory of Grébner bases.

» Orientation of relations depend on an ambient monomial order, that is a well-founded total order
such that s(f) > t(f) for any rule f and uvw > uv’w for any monomials u, v, w such that v > v'.
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Introduction of linear polygraphs:

CONVERGENT PRESENTATIONS AND POLYGRAPHIC
RESOLUTIONS OF ASSOCIATIVE ALGEBRAS

YvES GUIRAUD Eric HoFFBECK PHILIPPE MALBOS

Abstract - Several constructive homological methods based on noncommutative Grobner bases are
known to compute free resolutions of associative algebras. In particular, these methods relate the
Koszul property for an associative algebra to the existence of a quadratic Grobner basis of its ideal
of relations. In this article, using a higher-dimensional rewriting theory approach, we give several
improvements of these methods. We define polygraphs for associative algebras as higher-dimensional
linear rewriting systems that generalise the notion of noncommutative Gribner bases, and allow
more possibilities of iermination orders than those associated to monomial orders. We introduce
polygraphic resolutions of associative algebras, giving a categorical description of higher-dimensional
syzygies for presentations of algebras. We show how to compute polygraphic resolutions starting
from a convergent presentation, and how these resolutions can be linked with the Koszul property.

Keywords — Higher-dimensional associative algebras, confluence and termination. linear rewriting.
polygraphs, free resolutions, Koszulness.
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A toy example

> Consider an associative algebra A = K(x, y, z | xyz — x*> — y® — z%), i.e. Ais the algebra

generated by x,y and z quotiented by the ideal generated by xyz — x> — y® — 2.
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generated by x,y and z quotiented by the ideal generated by xyz — x> — y® — 2.

> If we orient the relation as xyz = x> 4+ y* + 2%, this can not be compatible with a monomial
order.

» Suppose such an order < exists.

» Since < is total, one of x,y,z is greater than the other two. Suppose it is x.
> Then x = y implies x? = yx and x > z implies yx > yz.

> Hence x? > yz, and x3 > xyz.

> We show that any x3, y3 and z3 is greater than xyz.
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> We show that any x3, y3 and z3 is greater than xyz.
> However, the linear 2-polygraph P = (x,y,z | xyz = x> + y> + z°) is terminating.
»> Consider the map @ : {x,y,z}* — N defined by

®(u) := 3 X number of xyz in u+ number of y in u.

> d(uxyzv) > d(ux3v), O(uxyzv) > P(uy3v), ®(uxyzv) > ®(uz3v) for any u,v € {x,y, z}*.

» Therefore, if we have a rewriting step f = >~ \ifj, we have ®(f) > ®(f;).

i

> There cannot exist an infinite rewriting sequence f = ' = f’ = ... in P, otherwise there would be
a strictly decreasing infinite sequence of natural numbers

D(f) > d(f') > d(F") > ...
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Outline

I. Linear 2-polygraphs
Il. The linear critical branching theorem
I1l. Squier’s coherence theorem

IV. Higher-dimensional linear polyraphs
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Algebroids

» There are two ways to see an associative algebra over a field K:

1) As a monoid object in the category Vectk (that is monoidal with product given by ®).

Associative algebras are presented by linear (1-)polygraphs.
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» There are two ways to see an associative algebra over a field K:
1) As a monoid object in the category Vectk (that is monoidal with product given by ®).

Associative algebras are presented by linear (1-)polygraphs.

2) As a category with only one object enriched over the monoidal category Vecty.

Associative algebras are presented by linear 2-polygraphs. v’

Monoids «w 1-categories with only one 0-cell.

Associative algebras «~ 1-algebroids with only one O-cell.

> A l-algebroid over a field K is a 1-category enriched over the category Vectx of K-vector spaces.
» Explicitely, it is given by:

» a set of O-cells Ag,

> for every O-cells p and g, a K-vector space A(p, g), whose elements are the 1-cells of A.

» for any O-cells p,q and r, there is a K-linear map %o : A(p, q) ® A(q, r) — A(p, r), and we denote
*o(f ® g) by fg.

> this composition is associtative: (fg)h = f(gh), and unitary: 1,f = f = f1, for any f € A(p, q).
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Linear 2-polygraphs

» Let (Po, P1) be a 1-polygraph, i.e., a directed graph with source and target maps so, to.
» The free 1-algebroid over P is the 1-algebroid P; defined by:
> (P1)§ = Po,

» for any p,q € Py, Pf(p, q) is the free K-vector space with basis P1(p, q).

7/24



Linear 2-polygraphs

» Let (Po, P1) be a 1-polygraph, i.e., a directed graph with source and target maps so, to.

» The free 1-algebroid over P is the 1-algebroid P; defined by:
> (P1)§ = Po,

» for any p,q € Py, Pf(p, q) is the free K-vector space with basis P1(p, q).

> If P has only one O-cell, P{ is the free K-algebra generated by P;.

7/24



Linear 2-polygraphs

» Let (Po, P1) be a 1-polygraph, i.e., a directed graph with source and target maps so, to.

» The free 1-algebroid over P is the 1-algebroid P; defined by:
> (P1)§ = Po,

» for any p,q € Py, Pf(p, q) is the free K-vector space with basis P1(p, q).
> If P has only one O-cell, P{ is the free K-algebra generated by P;.

» The source and target maps extend to maps so, to : Pf — Po.

7/24



Linear 2-polygraphs

» Let (Po, P1) be a 1-polygraph, i.e., a directed graph with source and target maps so, to.
» The free 1-algebroid over P is the 1-algebroid P; defined by:
> (P1)§ = Po,

» for any p,q € Py, Pf(p, q) is the free K-vector space with basis P1(p, q).

> If P has only one O-cell, P{ is the free K-algebra generated by P;.

v

The source and target maps extend to maps so, to : Pf — Po.

v

A linear 2-polygraph is a triple (Po, P1, P>) made of
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» Let (Po, P1) be a 1-polygraph, i.e., a directed graph with source and target maps so, to.
» The free 1-algebroid over P is the 1-algebroid P; defined by:
> (P1)§ = Po,

» for any p,q € Py, Pf(p, q) is the free K-vector space with basis P1(p, q).
> If P has only one O-cell, P{ is the free K-algebra generated by P;.

» The source and target maps extend to maps so, to : Pf — Po.

» A linear 2-polygraph is a triple (Po, P1, P>) made of
> a l-polygraph (Po, P1),

» a cellular extension P> of the free 1-algebroid Pf, with source and target maps s;,t; satisfying
globular relations:
Sos1 = sot1, Yyoti1 = toti.

» An element of P, is called a rewriting rule, and is depicted by

» From now on, we consider linear 2-polygraphs with only one O-cell.

> The ideal of a linear 2-polygraph P is the two-sided ideal of the algebra P} generated by
{si(a) — t1(a) | v € P2}
The algebra presented by P is the K-algebra given by P{ / I(P).
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2-Algebras

> A 2-algebra is an internal category in the category Algy of associative K-algebras.

> Explicitely, it is given by a diagram in Alg:

i2
/s—l\

AAT_—_— A -~ Az X, Az
51

where A> x4, Az is made of pairs (a, a") of elements of A, such that t1(a) = s1(a’).

8/24



2-Algebras

A\

A 2-algebra is an internal category in the category Alg; of associative K-algebras.

A\

Explicitely, it is given by a diagram in Alg:

2

/T N\

AAT_—_— A -~ Az X, Az
51

where A> x4, Az is made of pairs (a, a") of elements of A, such that t1(a) = s1(a’).

v

The product of two 2-cells a2 and b in A is denoted by ab.

\

The linear structure and product in the algebra A, x4, A> are given by:

(a,a) +(b,b')=(a+b,a +b'), \Ma,a’) = (Ma,\a"), (a,a")(b, b") = (ab,a’b")

v

The morphisms s1, t; and %1 satisfy the axioms of a 1-category.

8/24



2-Algebras

A\
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51

where A> x4, Az is made of pairs (a, a") of elements of A, such that t1(a) = s1(a’).
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» The linear structure and product in the algebra A> x4, A> are given by:

(a,a) +(b,b')=(a+b,a +b'), \Ma,a’) = (Ma,\a"), (a,a")(b, b") = (ab,a’b")

» The morphisms s1, t1 and %1 satisfy the axioms of a 1-category.

» Elements of A; are called 1-cells of A, and are pictured as:

f

SN

8—> @

~_ 7

h

» Elements of A, are called 2-cells of A, and are pictured as
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Properties of sources, targets and compositions of a 2-algebra

» For any 2-cells a, b and any A, i € K, we have
O1(ab) = 01(a)01(b), 0O1(Aa+ ub) = Ad1(a) + nd1(b) for O € {s, t}.
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f g f+eg
SN e\ Yo
° fl— > @ ° g—>0 V7 e —fig—> e
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we have
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(Aa) x1 (\a') = A(a*1 a) (Max1 pa' is not defined if \ # 1)

(ax1a)(bx1b')=abx a'b (exchange relation)
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» For any 2-cells a, b and any A, i € K, we have
O1(ab) = 01(a)01(b), 0O1(Aa+ ub) = Ad1(a) + nd1(b) for O € {s, t}.

» Properties of x;-composition: Given two 2-cells as follows:

f g ft+g
SN e\ o
° fl—>® ° g—>0 7 e —fyg/—> e
£ g g
we have
(a+b)x1(a' +b)=axia +bxi b
(Aa) x1 (\a') = A(a*1 a) (Max1 pa' is not defined if \ # 1)
(ax1a)(bx1b')=abx a'b (exchange relation)
> Some identities:
> For any 1-composable a and 2/, we have ax1 a’ = a+ a’ — t1(a),
» For any 2-cell a, we have a~ = —a + s1(a) + t1(a), so that any 2-cell is invertible for the

*1-composition.

» For any 2-cell a and b in A, we have

ab = asi(b) + ti(a)b — ti(a)s1(b) e s1(a)b + at1(b) — si(a)ti(b)

a,b
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The free 2-algebra on a linear 2-polygraph

» Given a linear 2-polygraph P, the free 2-algebra over P is the 2-algebra given by the following
diagram
i2

TN

S1
< e 0 0
PI%P2<:1 szprz
t1
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The free 2-algebra on a linear 2-polygraph

» Given a linear 2-polygraph P, the free 2-algebra over P is the 2-algebra given by the following

diagram
i2
z/\.sé 0 i i
P1<;P2'TP2 prpz
t1

where:

> Pf is defined as the quotient of the P{-bimodule (P} ® KP> ® P}) @ P{ quotiented by the
equivalence relation generated by

{Eqsp | a,b€ P{ @ KP> ® P{}.

> It has a structure of algebra, with product defined by
ab = asi(b) + t1(a)b — t1(a)s1(b)

> Elements of P have shape

Asy(a)
f /\ g h
e—— > \U/)\n e— — > T O—>0
\/
Aty ()

» The sphere correspond to the "monomial" place where we will apply rewriting steps inside a

polynomial.
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Monomials and rewriting steps

» A monomial in P5 is a 1-cell in the free monoid P; over P;.
» The monomials of Pﬁ form a linear basis of the algebra Pf.

» Every 1-cell f # 0 of Pf can be uniquely written as f = A\juy + - - - + A\pup with \; € K\{0} and u;
monomials.
Supp(f) :={u1,..., up}.
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t1(a)

» Every non-identity 2-cell a € Pg can be decomposed as A1a; + - - + A\pap + h where the a; are
2-monomials and h € Pf.
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» Why the green condition ? To avoid termination obstructions: if f = g is a rewriting step, then
—f = —g, and thus

g=(f+g)—f=(f+g)—g=".
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» Every non-identity 2-cell a € Pg can be decomposed as A1a; + - - + A\pap + h where the a; are
2-monomials and h € Pf.

> A rewriting step of P is a 2-cell of P of the form

Ao \UQ .+o—h>o

where o is a 2-monomial, A € K, g is a 1-cell of P{ such that f ¢ Supp(h).

» Why the green condition ? To avoid termination obstructions: if f = g is a rewriting step, then
—f = —g, and thus
g=(f+g)-f=(f+g)—g=".

> A 2-cell of P{ with that shape but without the green condition is called elementary.
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Termination

» From now on, all the linear 2-polygraphs we consider are left-monomial, that is s;(«) is a
monomial of Py for any o € Ps.
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> The rewrite order of P is the binary relation <p on the set of monomials of Py defined by:
» h <p f for any 2-cell a: f = g of P> and every monomial h € Supp(g),
> ' <p f implies gf’h <p gfh for any monomials f, ', g, h in Py.

> P is terminating if <p is well-founded.

» Example: Consider P = (x,y | xy = x* + y?).
> We have x2 <p xy and y2 < xy ~ x2y =p xy? =p x2y.

> We have an infinite rewriting sequence x?y = x3 + xy? = x3 + y3 + x2y = ...
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Termination
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> ff=fo=f=f=..=f="f then
f—F=(f—fA)+(A—f)+ -+ (fiz — fo1) + (fa1 — fa) € I(P).
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B"/ Xyx
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Confluence and linear bases

» Theorem: The following conditions are equivalent:
i) P is confluent.
ii) Every 1-cell of /(P) admits O as a normal form w.r.t P>.

iii) The vector space P{ admits the direct decomposition P{ = PIf & I(P).
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with g’, b’ reduced. Then, g’ — K" is reduced.

» The 2-cell (ax1a’)” *x1 (bx1 b'): g’ = h'. Thus, g’ — h' € I(P).

> From iii), g’ — b’ € I(P) N PYf = {0}, hence (a, b) is confluent.

» Theorem: Let A be an algebra and P be a convergent linear 2-polygraph presenting A. The set

P of monomials of P{ in normal form w.r.t P is a linear basis of A.
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Previously in...

» Associative algebras over a field K are presented by linear 2-polygraps. These are triples
P = (Po, P1, P>) where:

> Po={e},

> generating l-cells in P1 3 x,y,z, ... s P S xyz — x3 — y3 — 28,

> generating 2-cells (or rewriting rules) in P> 3 xyz = x3 + y3 4+ 23

~ Pé > X3yzx+xz+z4 = x8 +X2y3x+xzz3x+xz+z4.
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> generating 2-cells (or rewriting rules) in P> 3 xyz = x3 + y3 4+ 23

~ Pé > X3yzx+xz+z4 = x8 +X2y3x+xzz3x+xz + z*
> We consider left-monomial linear 2-polygraphs, that is s(c) is a monomial of P{ for any a € Px.

> A rewriting step of P is a 2-cell of P4 of the form

>\. \U/a .“F'%.

where o is a 2-monomial, A € K, g is a 1-cell of P{ such that f ¢ Supp(h).

» If P is convergent, we have the direct sum decomposition
Pi=P"®I(P)

and thus the monomials in normal form give a linear basis of the algebra P := P{ / I(P).

> If Pis a linear 2-polygraph, (P{, =) gives an abstract rewriting system.
» As opposed to set-theoretical context, we do not consider all the 2-cells of Pﬁ.

» Newman lemma: If P is terminating, confluence and local confluence are equivalent properties.

15/24



Local branchings

» Local branchings of a left-monomial linear 2-polygraph are split into the following four families:

Aa+h

1) Aspherical: \f + h Ag+h
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Local confluence from critical confluence

» Example: Consider the linear 2-polygraph P = (x,y,z,t | xy = xz, zt £ 2yt).

» It has no critical branching, but it has a non-confluent additive branching:
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> It terminates, but has a nonconfluent Peiffer branching:

6xz 38 3xz
3az 1)
ayz + xyz 3xyz 2xB3 + xyz
/ RS
Xyyz + xyz 2xz + xyz
7
Oxyz ‘oz + xXyz
xyB + xyz Y-
2xB ¥ \
4xz oz 2xz

17 /24



Local confluence from critical confluence

» Example: Consider the linear 2-polygraph P = (x,y,z,t | xy = xz, zt £ 2yt).

» It has no critical branching, but it has a non-confluent additive branching:

4at 4xpB
2xp 4xyt 4xzt
at + xzt 2zt xzt + xf3
/ =
xyt + xzt xzt + 2xyt
\ T
xyt + xf3 3xyt at + 2xyt
3at 3xzt 6xyt
3x3 b6at

» We need termination to ensure confluence of additive branchings.
. . 3
> Example: Consider the linear 2-polygraph (x,y,z | xy = 2x, yz = z).

> It terminates, but has a nonconfluent Peiffer branching:

6xz 38 3xz
3az 1)
ayz + xyz 3xyz 2xB3 + xyz
/ RS
Xyyz + xyz 2xz + xyz
7
Oxyz ‘oz + xXyz
xyB + xyz Y-
2xB ¥ \
4xz oz 2xz

» Critical confluence is needed to ensure confluence of Peiffer branchings. )2



The linear critical branching theorem

» Theorem: A terminating left-monomial linear 2-polygraph is locally confluent if and only if all its
critical branchings are confluent.

18/24



The linear critical branching theorem

» Theorem: A terminating left-monomial linear 2-polygraph is locally confluent if and only if all its
critical branchings are confluent.

> Key point: Let a be an elementary 2-cell of P5, then a can be factorised in the 2-algebra P into

18/24



The linear critical branching theorem

» Theorem: A terminating left-monomial linear 2-polygraph is locally confluent if and only if all its
critical branchings are confluent.

> Key point: Let a be an elementary 2-cell of P5, then a can be factorised in the 2-algebra P into

o4

B\h%

» Example: Let P be a linear 2-polygraph and o : f = g be a 2-cell.

Aa+(puf+ng)

_——
A+ (uf +ng) g + (uf +ng)

mmxng(ﬁﬁn)g%g

18/24



The linear critical branching theorem

>

Theorem: A terminating left-monomial linear 2-polygraph is locally confluent if and only if all its
critical branchings are confluent.

Key point: Let o be an elementary 2-cell of P4, then a can be factorised in the 2-algebra P4 into

o4

S

Example: Let P be a linear 2-polygraph and o : f = g be a 2-cell.

Aa+(puf+ng)

_——
A+ (uf +ng) g + (uf +ng)

(m ()‘+/L+7])g %g

The proof of the theorem is made by Noetherian induction: consider a local branching with
source f, and suppose that any branching («, 3) with source g <p f is confluent.

18/24



The linear critical branching theorem

» Theorem: A terminating left-monomial linear 2-polygraph is locally confluent if and only if all its
critical branchings are confluent.

> Key point: Let a be an elementary 2-cell of P5, then a can be factorised in the 2-algebra P into

o4

S

» Example: Let P be a linear 2-polygraph and o : f = g be a 2-cell.

Aa+(puf+ng)

_——
A+ (uf +ng) g + (uf +ng)

(m ()‘+/L+7])g %g

» The proof of the theorem is made by Noetherian induction: consider a local branching with
source f, and suppose that any branching («, 3) with source g <p f is confluent.

» The factorisation property extends to 2-cells of the form « := fy 2HELB et f, where
the a; are elementary 2-cells.

18/24



The linear critical branching theorem

» Theorem: A terminating left-monomial linear 2-polygraph is locally confluent if and only if all its
critical branchings are confluent.

> Key point: Let a be an elementary 2-cell of P5, then a can be factorised in the 2-algebra P into

o4

S

» Example: Let P be a linear 2-polygraph and o : f = g be a 2-cell.

Aa+(puf+ng)

_——
A+ (uf +ng) g + (uf +ng)

(m ()‘+/L+7])g %g

» The proof of the theorem is made by Noetherian induction: consider a local branching with
source f, and suppose that any branching («, 3) with source g <p f is confluent.

» The factorisation property extends to 2-cells of the form « := fy 2HELB et f, where
the a; are elementary 2-cells.

» By induction on p > 0. If p =0, « is an identity and the factorisation is trivial.

18/24



The linear critical branching theorem

» Theorem: A terminating left-monomial linear 2-polygraph is locally confluent if and only if all its
critical branchings are confluent.

> Key point: Let a be an elementary 2-cell of P5, then a can be factorised in the 2-algebra P into

o4

S

» Example: Let P be a linear 2-polygraph and o : f = g be a 2-cell.

Aa+(puf+ng)

_——
A+ (uf +ng) g + (uf +ng)

(m ()‘+/L+7])g %g

» The proof of the theorem is made by Noetherian induction: consider a local branching with
source f, and suppose that any branching («, 3) with source g <p f is confluent.

» The factorisation property extends to 2-cells of the form « := fy 2HELB et f, where
the a; are elementary 2-cells.

» By induction on p > 0. If p =0, « is an identity and the factorisation is trivial.

042*0"'*1% fo
al/> fi

fo

» Otherwise,

18/24



The linear critical branching theorem

» Theorem: A terminating left-monomial linear 2-polygraph is locally confluent if and only if all its
critical branchings are confluent.

> Key point: Let a be an elementary 2-cell of P5, then a can be factorised in the 2-algebra P into

o4

S

» Example: Let P be a linear 2-polygraph and o : f = g be a 2-cell.

Aa+(puf+ng)

_——
A+ (uf +ng) g + (uf +ng)

(m ()\+M+n)g%g

» The proof of the theorem is made by Noetherian induction: consider a local branching with
source f, and suppose that any branching («, 3) with source g <p f is confluent.

» The factorisation property extends to 2-cells of the form « := fy 2HELB et f, where
the a; are elementary 2-cells.

» By induction on p > 0. If p =0, « is an identity and the factorisation is trivial.

042*0"'*% fo
o1 f]_
7N,
SN

f() vgl

B1

» Otherwise,

18/24



The linear critical branching theorem

» Theorem: A terminating left-monomial linear 2-polygraph is locally confluent if and only if all its
critical branchings are confluent.

> Key point: Let a be an elementary 2-cell of P5, then a can be factorised in the 2-algebra P into

o4

S

» Example: Let P be a linear 2-polygraph and o : f = g be a 2-cell.

Aa+(puf+ng)

_——
A+ (uf +ng) g + (uf +ng)

(m ()\+M+n)g%g

» The proof of the theorem is made by Noetherian induction: consider a local branching with
source f, and suppose that any branching («, 3) with source g <p f is confluent.

» The factorisation property extends to 2-cells of the form « := fy 2HELB et f, where
the a; are elementary 2-cells.

» By induction on p > 0. If p =0, « is an identity and the factorisation is trivial.

042*0"'*% fo \WZ

» Otherwise,

18/24



The linear critical branching theorem

» Theorem: A terminating left-monomial linear 2-polygraph is locally confluent if and only if all its
critical branchings are confluent.

> Key point: Let a be an elementary 2-cell of P5, then a can be factorised in the 2-algebra P into

o4

S

» Example: Let P be a linear 2-polygraph and o : f = g be a 2-cell.

Aa+(puf+ng)

_——
A+ (uf +ng) g + (uf +ng)

(m ()\+M+n)g%g

» The proof of the theorem is made by Noetherian induction: consider a local branching with
source f, and suppose that any branching («, 3) with source g <p f is confluent.

» The factorisation property extends to 2-cells of the form « := fy 2HELB et f, where
the a; are elementary 2-cells.

» By induction on p > 0. If p =0, « is an identity and the factorisation is trivial.

042*0"'*% fo \VZ
al/‘? fi \T P2 ——> g2 N‘z
AN Ind.

fO\\%?glv?h

B1 81

» Otherwise,

18/24



The linear critical branching theorem

> Step 1: Additive branchings are confluent.
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Example: the Weyl algebras

» The Weyl algebra of dimension n over a field K is the algebra presented by the linear 2-polygraph
P = <X1,....,Xn,81.,...,(9n |X,'Xj:>XjX1, 8,-8]-:>8j6;, (9,'><J'Z>Xja,',

Oixi = xi0; + 1forany 1 < i < j < n).
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» The Weyl algebra of dimension n over a field K is the algebra presented by the linear 2-polygraph
P = <X1,...,X,,,(91,...,(9n |X,'><j:>)<j)</7 8;8j:>8j6;, (9,'Xj:>)<ja,',

Oixi = xi0; + 1forany 1 < i < j < n).

» |t terminates, using the degree lexicographic order on 01 > 0> > -+ > 0p > x1 > X2 > ... Xp.

» |t has six critical branchings:

/ XjXiXk => XjXkXi \ / 0j0;0k = 0;0k0; \

Xi Xj Xk Xk Xj Xi 0;0;0k Ok 0;0;
J J

S XiXkXj = XiXiXj = N o,

/ X;O0jxx = Xjxk O \ / 0;0ixk = O0jxk0; \

a,'Xij Xkaa,' 0,-81-xk xké),-c?,-

\ (9,'Xka = Xka,'Xj / \ (?,‘Xkaj = Xka,'aj /

P Xi0ix; + x; = xix;0;i + X = / 0;0ix; === 0jx;0; \

a,'X,‘Xj XjX,'a,' + X; a,'anj Xjaja,'

\ Oixjxi =——=> x;0iX; / \ 0ixj0j + 0i = x;0;0; + 0; /

> A linear basis of the Weyl algebra of dimension n is given by the elements x5 ... x5 . .. 8{51
for a1,...,an, B1,..., 08, € N.
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IIl. Squier’'s coherence theorem
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Homotopy bases and coherent confluence

> A linear 3-polygraph is a quadruple (Po, P1, P>, P3) made of (4

> a linear 2-polygraph (Po, Py, P2), A

So(A) sz(A)\U/S\U/tz(A) to(A)
S2 ‘

» a cellular extension P3; ——= Pé satisfying globular condition:

t2
t1(A)
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*1
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> One defines the free 3-algebra P4 generated by a linear 3-polygraph P.

» A coherent presentation of an algebra A is a linear 3-polygraph P such that:
» (Pg, P1, P2) is a presentation of A,

» the cellular extension Pj3 is acyclic, that is every 2-sphere of Pf can be filled with a 3-cell of Pﬁ.

> Consider a (left-monomial) linear 2-polygraph P with a cellular extension Ps of P5. A branching
(o, B) of P is Ps-confluent if

. h
» it is confluent. /

> there exists a 3-cell A in Pﬁ tiling the confluence diagram. X
g

» Theorem (Coherent Newman lemma): If P is terminating, then P is Ps-confluent if and only if

P is locally Ps-confluent.
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Acyclicity from coherent confluence

» Proposition: Let P be a left-monomial linear 2-polygraph, and P be a cellular extension of P. If
P is Ps-convergent, then Ps is acyclic.
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» Proof:
» P is P3-convergent = P is convergent, hence any 1l-cell f of Pf admits a unique normal form f.

> Pf contains a positive 2-cell 27
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Acyclicity from coherent confluence

» Proposition: Let P be a left-monomial linear 2-polygraph, and P be a cellular extension of P. If
P is Ps-convergent, then Ps is acyclic.

» Proof:
» P is P3-convergent = P is convergent, hence any 1l-cell f of Pf admits a unique normal form f.

> Pf contains a positive 2-cell 27

a Mg
g
> Consider a positive 2-cell o : f = g of Pﬁ. /W%\

nf
> Putn,- =a %1 (na)” to obtain the following 2-cell of Pﬁ:
a” f nf
7 N
g _— —7 f
Mg
> Consider a 2-cell a : f = g in Pﬁ ~ this factorises into o = 81 0 y; *0 - %0 Bp *0 Vp -
» Define 7, as the following 3-cell of Pg:
B1 V1 8p hy
f & fa i fo & g
Il Il I Il
!]f\H/ /T]gl Nt N, by / \H/ng
v Z N 2 Y v Ny Y
f f f e f f f

v

Finally, for all parallel 2-cells o, 3 : f — g of Pg, the composite 3-cell

o <

. Mg

Y N N
77(:7/>7f77]g>g

Vng ng
B g 7 1g 23/24
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Squier’s theorem

» Squier’'s coherence theorem: Let P be a convergent left-monomial linear 2-polygraph. A cellular
extension Ps of P4 that contains a 3-cell

/g\
\>h/

for every critical branching (a, 8) of P, with o/ and 3’ positive 2-cells of P, is acyclic.
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Squier’s theorem

» Squier’'s coherence theorem: Let P be a convergent left-monomial linear 2-polygraph. A cellular

extension Ps of P4 that contains a 3-cell

» Example: Consider P =

/g\
\h/

for every critical branching (a, 8) of P, with o/ and 3’ positive 2-cells of P, is acyclic.

(x,y,z | yz3 —x*,

A=K(x,y,z | x> +yz=0, x>+ Azy = 0), with gz := A1,

> It terminates, using the deglex order generated by z > y > x.

» Squier’s completion:

ay 7X2y

o

y — pyx?

Bz

zZo

— ZX

— ux?z

zyz/m B )jé

2

1z

4
QXZ/ - X

e

pyx*z

\Xz «

xyz

> (x,y,z | a,B,7,8 | A B,C,D) is a coherent presentation of A.
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Squier’s theorem

» Squier’'s coherence theorem: Let P be a convergent left-monomial linear 2-polygraph. A cellular

extension Ps of P4 that contains a 3-cell

/g\
\ﬂ,/

for every critical branching (a, 8) of P, with o/ and 3’ positive 2-cells of P, is acyclic.

> Example: Consider P = (x,y,z | yz = —x°

, zy £ —px?) presenting the algebra

A=K(x,y,z | x> +yz=0, x>+ Azy = 0), with gz := A1,

> It terminates, using the deglex order generated by z > y > x.

» Squier’s completion:

V —x32y /gz/ — px?z
yzy MA ‘)j;m’ zyz MB )jé
yﬁx — pyx? o — zx?

ax? - X 4 2
7 N\
yzx?
~Nz
oS a7 N

ﬁxz - /‘X4 xzﬁ
w C x2yz zyx2 w D X2zy

wyx?z Azx2y 7 Ady

> (x,y,z | a,B,7,8 | A B,C,D) is a coherent presentation of A.

» Example: The linear 2-polygraph P = (x,y,z | xyz = x>+ y* + z*) is convergent and admits

an empty homotopy basis.
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