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From Gröbner bases to linear polygraphs

I Last week was presented the approach of linear rewriting using the theory of Gröbner bases.

I Orientation of relations depend on an ambient monomial order, that is a well-founded total order
such that s(f ) > t(f ) for any rule f and uvw > uv ′w for any monomials u, v ,w such that v > v ′.

I Today, we introduce a categorical setting of linear rewriting.

I Rules do not have to be oriented w.r.t a monomial order.

I Questions: computation of linear bases, of resolutions, membership problems.

I Two fundamental properties of computations: termination, and confluence.

I Introduction of linear polygraphs:
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A toy example

I Consider an associative algebra A = K〈x , y , z | xyz − x3 − y3 − z3〉, i.e. A is the algebra
generated by x ,y and z quotiented by the ideal generated by xyz − x3 − y3 − z3.

I If we orient the relation as xyz ⇒ x3 + y3 + z3, this can not be compatible with a monomial
order.

I Suppose such an order ≺ exists.

I Since ≺ is total, one of x ,y ,z is greater than the other two. Suppose it is x .

I Then x � y implies x2 � yx and x � z implies yx � yz.

I Hence x2 � yz, and x3 � xyz.

I We show that any x3, y3 and z3 is greater than xyz.

I However, the linear 2-polygraph P = 〈x , y , z | xyz ⇒ x3 + y3 + z3〉 is terminating.

I Consider the map Φ : {x , y , z}∗ → N defined by

Φ(u) := 3× number of xyz in u + number of y in u.

I Φ(uxyzv) > Φ(ux3v), Φ(uxyzv) > Φ(uy3v), Φ(uxyzv) > Φ(uz3v) for any u, v ∈ {x , y , z}∗.

I Therefore, if we have a rewriting step f ⇒
∑
i
λi fi , we have Φ(f ) > Φ(fi ).

I There cannot exist an infinite rewriting sequence f ⇒ f ′ ⇒ f ′′ ⇒ . . . in P, otherwise there would be
a strictly decreasing infinite sequence of natural numbers

Φ(f ) > Φ(f ′) > Φ(f ′′) > . . .
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Outline

I. Linear 2-polygraphs

II. The linear critical branching theorem

III. Squier’s coherence theorem

IV. Higher-dimensional linear polyraphs
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Algebroids

I There are two ways to see an associative algebra over a field K:

1) As a monoid object in the category VectK (that is monoidal with product given by ⊗).
Associative algebras are presented by linear (1-)polygraphs.

2) As a category with only one object enriched over the monoidal category VectK.

Associative algebras are presented by linear 2-polygraphs.

Monoids! 1-categories with only one 0-cell.

Associative algebras! 1-algebroids with only one 0-cell.

I A 1-algebroid over a field K is a 1-category enriched over the category VectK of K-vector spaces.

I Explicitely, it is given by:

I a set of 0-cells A0,

I for every 0-cells p and q, a K-vector space A(p, q), whose elements are the 1-cells of A.

I for any 0-cells p,q and r , there is a K-linear map ?0 : A(p, q)⊗ A(q, r)→ A(p, r), and we denote
?0(f ⊗ g) by fg .

I this composition is associtative: (fg)h = f (gh), and unitary: 1pf = f = f 1q for any f ∈ A(p, q).
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Linear 2-polygraphs

I Let (P0,P1) be a 1-polygraph, i.e., a directed graph with source and target maps s0, t0.

I The free 1-algebroid over P is the 1-algebroid P`1 defined by:

I (P1)`0 = P0,

I for any p, q ∈ P0, P`1(p, q) is the free K-vector space with basis P1(p, q).

I If P has only one 0-cell, P`1 is the free K-algebra generated by P1.

I The source and target maps extend to maps s0, t0 : P`1 → P0.

I A linear 2-polygraph is a triple (P0,P1,P2) made of

I a 1-polygraph (P0,P1),

I a cellular extension P2 of the free 1-algebroid P`1 , with source and target maps s1,t1 satisfying
globular relations:

s0s1 = s0t1, y0t1 = t0t1.

I An element of P2 is called a rewriting rule, and is depicted by

p

f

##

g

;;�� q

I From now on, we consider linear 2-polygraphs with only one 0-cell.

I The ideal of a linear 2-polygraph P is the two-sided ideal of the algebra P`1 generated by

{s1(α)− t1(α) | α ∈ P2}

The algebra presented by P is the K-algebra given by P`1 / I (P).
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2-Algebras

I A 2-algebra is an internal category in the category AlgK of associative K-algebras.

I Explicitely, it is given by a diagram in Alg:

A1

i2

��
A2

t1
oo

s1oo
A2 ×A1 A2?1

oo

where A2 ×A1 A2 is made of pairs (a, a′) of elements of A2 such that t1(a) = s1(a
′).

I The product of two 2-cells a and b in A2 is denoted by ab.

I The linear structure and product in the algebra A2 ×A1 A2 are given by:

(a, a′) + (b, b′) = (a+ b, a′ + b′), λ(a, a′) = (λa, λa′), (a, a′)(b, b′) = (ab, a′b′)

I The morphisms s1, t1 and ?1 satisfy the axioms of a 1-category.

I Elements of A1 are called 1-cells of A, and are pictured as:

•

f

##
g //

h

;; •

I Elements of A2 are called 2-cells of A, and are pictured as

•

s1(α)

##

t1(α)

;;α
��

•
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Properties of sources, targets and compositions of a 2-algebra

I For any 2-cells a, b and any λ, µ ∈ K, we have

∂1(ab) = ∂1(a)∂1(b), ∂1(λa+ µb) = λ∂1(a) + µ∂1(b) for ∂ ∈ {s, t}.

I Properties of ?1-composition: Given two 2-cells as follows:

•

f

��
f ′ //

f ′′

DD•
a��

a′��

•

g

��
g′ //

g′′

DD•
b��

b′��

 •

f +g

��
f ′+g′ //

f ′′+g′′

DD•
a+b��

a′+b′′��

we have

(a+ b) ?1 (a
′ + b′) = a ?1 a

′ + b ?1 b
′

(λa) ?1 (λa
′) = λ(a ?1 a

′) (λa ?1 µa
′ is not defined if λ 6= µ)

(a ?1 a
′)(b ?1 b

′) = ab ?1 a
′b′ (exchange relation)

I Some identities:

I For any 1-composable a and a′, we have a ?1 a′ = a + a′ − t1(a),

I For any 2-cell a, we have a− = −a + s1(a) + t1(a), so that any 2-cell is invertible for the
?1-composition.

I For any 2-cell a and b in A, we have

ab = as1(b) + t1(a)b − t1(a)s1(b) =
Eqa,b

s1(a)b + at1(b)− s1(a)t1(b)
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The free 2-algebra on a linear 2-polygraph

I Given a linear 2-polygraph P, the free 2-algebra over P is the 2-algebra given by the following
diagram

P`1

i2

��
P`2

t1
oo

s1oo
P`2 ×P`1

P`2?1
oo

where:

I P`2 is defined as the quotient of the P`1-bimodule (P`1 ⊗ KP2 ⊗ P`1)⊕ P`1 quotiented by the
equivalence relation generated by

{Eqa,b | a, b ∈ P`1 ⊗ KP2 ⊗ P`1}.

I It has a structure of algebra, with product defined by

ab = as1(b) + t1(a)b − t1(a)s1(b)

I Elements of P`2 have shape

• f // •

λs1(α)

##

λt1(α)

;;λα
��

•
g // • + • h // •

I The sphere correspond to the "monomial" place where we will apply rewriting steps inside a
polynomial.
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Monomials and rewriting steps

I A monomial in P`2 is a 1-cell in the free monoid P∗1 over P1.

I The monomials of P`2 form a linear basis of the algebra P`1 .

I Every 1-cell f 6= 0 of P`1 can be uniquely written as f = λ1u1 + · · ·+ λpup with λi ∈ K\{0} and ui
monomials.

Supp(f ) := {u1, . . . , up}.

I A 2-monomial of P`2 is a 2-cell with shape

• f // •

s1(α)

##

t1(α)

;;α
��

•
g // • where α ∈ P2 and u, v are monomials of P`1 .

I Every non-identity 2-cell a ∈ P`2 can be decomposed as λ1a1 + · · ·+ λpap + h where the ai are
2-monomials and h ∈ P`1 .

I A rewriting step of P is a 2-cell of P`2 of the form

λ •

f

##

g

;;α�� • + • h // •

where α is a 2-monomial, λ ∈ K, g is a 1-cell of P`1 such that f /∈ Supp(h).

I Why the green condition ? To avoid termination obstructions: if f ⇒ g is a rewriting step, then
−f ⇒ −g , and thus

g = (f + g)−f⇒(f + g)−g= f .

I A 2-cell of P`2 with that shape but without the green condition is called elementary.
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Termination

I From now on, all the linear 2-polygraphs we consider are left-monomial, that is s2(α) is a
monomial of P`1 for any α ∈ P2.

I The rewrite order of P is the binary relation ≺P on the set of monomials of P`1 defined by:

I h ≺P f for any 2-cell α : f ⇒ g of P2 and every monomial h ∈ Supp(g),

I f ′ ≺P f implies gf ′h ≺P gfh for any monomials f , f ′, g , h in P`1 .

I P is terminating if ≺P is well-founded.

I Example: Consider P = 〈x , y | xy ⇒ x2 + y2〉.
I We have x2 ≺P xy and y2 ≺ xy  x2y �P xy2 �P x2y .

I We have an infinite rewriting sequence x2y ⇒ x3 + xy2 ⇒ x3 + y3 + x2y ⇒ . . .

I Denote Pnf
1 the set of normal forms of P. If P is terminating,

P`1 = Pnf
1 + I (P), f = f̂ + (f − f̂ ).

I If f = f0 ⇒ f1 ⇒ f2 ⇒ . . .⇒ fn = f̂ , then

f − f̂ = (f0 − f1) + (f1 − f2) + · · ·+ (fn−2 − fn−1) + (fn−1 − fn) ∈ I (P).

I The decomposition is not direct in general: consider P = 〈x , y | x2 β⇒ xy〉.

xyx

x3

βx ,4

xβ

)1 x2y
βy
+3 xy2

xyx − xy2 = −(x2 − xy)x + x(x2 − xy) + (x2 − xy)y

12 / 24
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Confluence and linear bases

I Theorem: The following conditions are equivalent:

i) P is confluent.

ii) Every 1-cell of I (P) admits 0 as a normal form w.r.t P2.

iii) The vector space P`1 admits the direct decomposition P`1 = Pnf
1 ⊕ I (P).

I i)⇒ ii): Let f be in I (P): f is a linear combination of elements of the form λiui (s(αi )− t(αi ))vi ,
that all reduce to 0.
There exists a 2-cell f ⇒ 0 in P`2 . Since P is confluent, f and 0 have the same normal form, and
thus 0 is a normal form for f .

I ii)⇒ iii): Suppose f ∈ Pnf
1 ∩ I (P).

I f ∈ Pnf
1 ⇒ f admits itself as a normal form.

I f ∈ I (P)V
i)

f admits 0 as a normal form.

I iii)⇒ i): Consider a branching (a : f ⇒ g , b : f ⇒ h) of P.

g
a′ +3 g ′

f

a +3

b
,4 h

b′
+3 h′

with g ′, h′ reduced. Then, g ′ − h′ is reduced.

I The 2-cell (a ?1 a′)− ?1 (b ?1 b′) : g ′ ⇒ h′. Thus, g ′ − h′ ∈ I (P).

I From iii), g ′ − h′ ∈ I (P) ∩ Pnf
1 = {0}, hence (a, b) is confluent.

I Theorem: Let A be an algebra and P be a convergent linear 2-polygraph presenting A. The set
Pmnf

1 of monomials of P`1 in normal form w.r.t P is a linear basis of A.
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II. The linear critical branching theorem
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Previously in...

I Associative algebras over a field K are presented by linear 2-polygraps. These are triples
P = (P0,P1,P2) where:

I P0 = {•},

I generating 1-cells in P1 3 x , y , z, . . .  P`1 3 xyz − x3 − y3 − z3,

I generating 2-cells (or rewriting rules) in P2 3 xyz ⇒ x3 + y3 + z3

 P`2 3 x3yzx + xz + z4 ⇒ x6 + x2y3x + x2z3x + xz + z4.

I We consider left-monomial linear 2-polygraphs, that is s(α) is a monomial of P`1 for any α ∈ P2.

I A rewriting step of P is a 2-cell of P`2 of the form

λ •

f

##

g

;;α�� • + • h // •

where α is a 2-monomial, λ ∈ K, g is a 1-cell of P`1 such that f /∈ Supp(h).

I If P is convergent, we have the direct sum decomposition

P`1 = Pnf
1 ⊕ I (P)

and thus the monomials in normal form give a linear basis of the algebra P := P`1 / I (P).

I If P is a linear 2-polygraph, (P`1 ,⇒stp) gives an abstract rewriting system.

I As opposed to set-theoretical context, we do not consider all the 2-cells of P`2 .

I Newman lemma: If P is terminating, confluence and local confluence are equivalent properties.
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Local branchings

I Local branchings of a left-monomial linear 2-polygraph are split into the following four families:

1) Aspherical: λf + h

λa+h

$,

λa+h

2:λg + h

2) Peiffer:

λf ′g + h

λfg + h

λag+h *2

λfb+h
,4 λfg ′ + h

3) Additive:

λf ′ + µg + h

λf + µg + h

λa+µg+h +3

λf +µb+h
+3 λf + µg ′ + h

4) Overlapping:

λf ′ + h

λf + h

λa+h )1

λb+h
,4 λf ′′ + h

I A critical branching is an overlapping branching, with λ = 1 and h = 0, that is minimal for the
order relation on branchings defined by (a, b) ⊆ (hah′, hbh′) for any w ,w ′ ∈ P∗1 .

I Sketch of the proof of the critical branching lemma: Examine confluence of local branchings
case by case.

String rewriting systems Linear Rewriting Systems

Aspherical are confluent. Aspherical are confluent.

Peiffer are confluent. Peiffer are confluent. 7

No additive. Additive are confluent. 7

Conf. of critical ⇒ Conf. of overlappings. Conf. of critical ⇒ Conf. of overlappings. 7
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Local confluence from critical confluence

I Example: Consider the linear 2-polygraph P = 〈x , y , z , t | xy α⇒ xz , zt
β⇒ 2yt〉.

I It has no critical branching, but it has a non-confluent additive branching:

4xyt 4xzt · · ·

2xzt

xyt + xzt xzt + 2xyt

3xyt

3xzt 6xyt · · ·

I We need termination to ensure confluence of additive branchings.

I Example: Consider the linear 2-polygraph 〈x , y , z | xy α⇒ 2x , yz β⇒ z〉.

I It terminates, but has a nonconfluent Peiffer branching:

6xz 3xz

3xyz
3αz

KS 3xβ 19

2xβ + xyz

%-
xyyz + xyz

αyz + xyz -5

xyβ + xyz
)1

2xz + xyz

2xyz αz + xyz

19

2αz %-2xβ ��
4xz 2xz

I Critical confluence is needed to ensure confluence of Peiffer branchings.
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The linear critical branching theorem

I Theorem: A terminating left-monomial linear 2-polygraph is locally confluent if and only if all its
critical branchings are confluent.

I Key point: Let α be an elementary 2-cell of P`2 , then a can be factorised in the 2-algebra P`2 into

f
α

&.

β (0

g

γmuh

I Example: Let P be a linear 2-polygraph and α : f ⇒ g be a 2-cell.

λf + (µf + ηg)

λα+(µf +ηg)
*2

(λ+µ)α+ηg (0

λg + (µf + ηg)

µα+(λ+η)gnv
(λ+ µ+ η)g

I The proof of the theorem is made by Noetherian induction: consider a local branching with
source f , and suppose that any branching (α, β) with source g ≺P f is confluent.

I The factorisation property extends to 2-cells of the form α := f0
α0⇒ f1

α1⇒ f2
α2⇒ . . .

αp−1⇒ fp where
the αi are elementary 2-cells.

I By induction on p ≥ 0. If p = 0, α is an identity and the factorisation is trivial.

I Otherwise,
fp

f1 g2

f0 g1 h

18 / 24
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λf + (µf + ηg)

λα+(µf +ηg)
*2

(λ+µ)α+ηg (0

λg + (µf + ηg)

µα+(λ+η)gnv
(λ+ µ+ η)g

I The proof of the theorem is made by Noetherian induction: consider a local branching with
source f , and suppose that any branching (α, β) with source g ≺P f is confluent.

I The factorisation property extends to 2-cells of the form α := f0
α0⇒ f1

α1⇒ f2
α2⇒ . . .

αp−1⇒ fp where
the αi are elementary 2-cells.

I By induction on p ≥ 0. If p = 0, α is an identity and the factorisation is trivial.

I Otherwise,
fp

f1 g2

f0 g1 h
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The linear critical branching theorem

I Step 1: Additive branchings are confluent.

I Step 2: Peiffer are confluent.

λf ′g + h k

λfg + h λf ′g ′ + h p

λfg ′ + h k ′

I Step 3: Overlappings are confluent.

λa+ c l

λu + c λe + c p

λb + c l ′
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Example: the Weyl algebras

I The Weyl algebra of dimension n over a field K is the algebra presented by the linear 2-polygraph

P = 〈x1, . . . , xn, ∂1, . . . , ∂n | xixj ⇒ xjxi , ∂i∂j ⇒ ∂j∂i , ∂ixj ⇒ xj∂i ,

∂ixi ⇒ xi∂i + 1 for any 1 ≤ i < j ≤ n〉.

I It terminates, using the degree lexicographic order on ∂1 > ∂2 > · · · > ∂n > x1 > x2 > . . . xn.

I It has six critical branchings:

xjxixk +3 xjxkxi
�"

xixjxk
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xixkxj +3 xkxixj
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/7
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 (
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19
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∂ixjxi +3 xj∂ixi

5=

∂j∂ixj +3 ∂jxj∂i
!)

∂i∂jxj

.6

%-

xj∂j∂i + ∂i

∂ixj∂j + ∂i +3 xj∂i∂j + ∂i

5=

I A linear basis of the Weyl algebra of dimension n is given by the elements xαn
n . . . xα1

1 ∂βnn . . . ∂β1
1

for α1, . . . , αn, β1, . . . , βn ∈ N.
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∂j∂i∂k +3 ∂j∂k∂i
�#

∂i∂j∂k

/7

'/

∂k∂j∂i

∂i∂k∂j +3 ∂k∂i∂j

:B
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�#

∂ixjxk

/7

'/

xkxj∂i

∂ixkxj +3 xk∂ixj

;C
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�#

∂i∂jxk

/7

'/

xk∂j∂i

∂ixk∂j +3 xk∂i∂j

;C

xi∂ixj + xj +3 xixj∂i + xj
 (

∂ixixj
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5=
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III. Squier’s coherence theorem
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Homotopy bases and coherent confluence

I A linear 3-polygraph is a quadruple (P0,P1,P2,P3) made of

I a linear 2-polygraph (P0,P1,P2),

I a cellular extension P3
s2 //
t2
// P`2 satisfying globular condition:

s0(A)

s1(A)

##

t1(A)

;;t0(A)s2(A) �� t2(A)��
A
*4

I A 3-algebra is given by the data of a diagram in Alg:

A1

i2

!!
A2

t1
oo

s1oo

i3

$$
A3

t2
oo

s2oo

A2 ×A1 A2

?1

OO

A3 ×A2 A3

?2

OO

A3 ×A1 A3

?1

ff

I One defines the free 3-algebra P`3 generated by a linear 3-polygraph P.

I A coherent presentation of an algebra A is a linear 3-polygraph P such that:

I (P0,P1,P2) is a presentation of A,

I the cellular extension P3 is acyclic, that is every 2-sphere of P`2 can be filled with a 3-cell of P`3 .

I Consider a (left-monomial) linear 2-polygraph P with a cellular extension P3 of P`2 . A branching
(α, β) of P is P3-confluent if

I it is confluent.

I there exists a 3-cell A in P`3 tiling the confluence diagram.

h α′

�#
f

α +3

β
+3

h

g
β′

;CA
�

I Theorem (Coherent Newman lemma): If P is terminating, then P is P3-confluent if and only if
P is locally P3-confluent.
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Acyclicity from coherent confluence

I Proposition: Let P be a left-monomial linear 2-polygraph, and P3 be a cellular extension of P. If
P is P3-convergent, then P3 is acyclic.

I Proof:

I P is P3-convergent ⇒ P is convergent, hence any 1-cell f of P`1 admits a unique normal form f .

I P`2 contains a positive 2-cell f
ηf⇒ f .

I Consider a positive 2-cell α : f ⇒ g of P`2 .
g

ηg

�"ηα
�f

α +3

ηf

08 f

I Put ηα− = α− ?1 (ηα)− to obtain the following 2-cell of P`3 :

f ηf

�"ηα−
�g

α− +3

ηg

08 f

I Consider a 2-cell α : f ⇒ g in P`2  this factorises into α = β1 ?0 γ
−
1 ?0 · · · ?0 βp ?0 γ−p .

I Define ηα as the following 3-cell of P`3 :

f
β1 +3

ηf

��

g1
γ−1 +3

ηg1
��ηβ1s�

f2 +3

ηf2
��η

γ
−
1s�

· · · +3 fp
gp +3

ηfp
��

gp
h−p +3

ηbp
��ηβps�

g

ηg

��η
γ
−
ps�

f f f · · · f f f

I Finally, for all parallel 2-cells α, β : f → g of P`2 , the composite 3-cell

g

ηg
 (

1g

�%
ηα
�

f

α
/7

ηf +3

β '/

f η−g +3 g

g

ηg

6>

1g

8@
η−β��
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Squier’s theorem

I Squier’s coherence theorem: Let P be a convergent left-monomial linear 2-polygraph. A cellular
extension P3 of P`2 that contains a 3-cell

g α′

�$
F
�f

α *2

β
,4

k

h
β′

;C

for every critical branching (α, β) of P, with α′ and β′ positive 2-cells of P`2 , is acyclic.

I Example: Consider P = 〈x , y , z | yz α⇒ −x2, zy
β⇒ −µx2〉 presenting the algebra

A = K〈x , y , z | x2 + yz = 0, x2 + λzy = 0〉, with µ := λ−1.

I It terminates, using the deglex order generated by z > y > x .

I Squier’s completion:

− x2y

yzy

− µyx2

− µx2z

zyz

− zx2

− x4

yzx2 x2yz

µyx2z

− µx4

zyx2 x2zy

λzx2y

I 〈x , y , z | α, β, γ, δ | A,B,C ,D〉 is a coherent presentation of A.

I Example: The linear 2-polygraph P = 〈x , y , z | xyz ⇒ x3 + y3 + z3〉 is convergent and admits
an empty homotopy basis.
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