Homotopical motivations of higher dimensinal rewriting

Maxime Lucas LIPN, Université Sorbonne Paris Nord

February 11, 2021

M. Lucas, LIPN

Homotopy for rewriting

February 11, 2021 1/13

Outline

- From monoid actions to weak actions
- From weak actions to coherent presentations
- A hands on introduction to model category structures
- Link with homological algebra

Take a monoid M acting on a groupoid C.

For any $m \in M$, $\overline{m} : C \to C$,

$$\overline{m} \circ \overline{n} = \overline{mn} \qquad \overline{1} = id$$

イロト 不得下 イヨト イヨト 二日

Take a monoid M acting on a groupoid C.

▶ For any
$$m \in M$$
, $\overline{m} : C \to C$,

$$\overline{m} \circ \overline{n} = \overline{mn} \qquad \overline{1} = id$$

Take now \mathcal{D} equivalent to \mathcal{C} :

Motto: Equivalent categories are the same.

- ∢ ≣ →

Take a monoid M acting on a groupoid C.

For any
$$m \in M$$
, $\overline{m} : C \to C$,

$$\overline{m} \circ \overline{n} = \overline{mn} \qquad \overline{1} = id$$

Take now \mathcal{D} equivalent to \mathcal{C} :

Motto: Equivalent categories are the same.

There should be an action of M on \mathcal{D} !

• Define
$$\bar{m}(x) := F(\bar{m}(G(x)))$$

4 E 5

Take a monoid M acting on a groupoid C.

▶ For any
$$m \in M$$
, $\overline{m} : C \to C$,

$$\overline{m} \circ \overline{n} = \overline{mn} \qquad \overline{1} = id$$

Take now \mathcal{D} equivalent to \mathcal{C} :

Motto: Equivalent categories are the same.

There should be an action of M on \mathcal{D} !

• Define $\overline{m}(x) := F(\overline{m}(G(x)))$: this is *not* a monoid action!

Homotopy for rewriting

First solution: weak actions

On \mathcal{D} , we only get natural isomorphisms:

$$\alpha^{m,n}: \bar{m} \circ \bar{n} \simeq \overline{mn} \qquad \beta: \bar{1} \simeq id$$

Those satisfy the following equation (+ equations involving β):

2nd solution: the case of free monoids

$$M = E^*$$

Μ.	Lucas,	LIPN

- 2

(a)

2nd solution: the case of presented monoids

$$M = \langle a | aa = 1 \rangle$$

IVI. Lucas, LII IV	Μ.	Lucas,	LIPN
--------------------	----	--------	------

∃ ► < ∃ ►</p>

Image: A matrix

- 2

Summary

- An action of *M* is replaced by an action of $\overline{\Sigma}$, where Σ is a coherent presentation of *M*.
- Weak actions correspond to (strict) actions by the standard coherent presentation fo *M*.
- A few questions:
 - In what way are coherent presentations "equivalent"?
 - ▶ What is the relationship between coherent presentations and *M*?
 - Goal: Push all this to higher dimensions...

Historically, this is better understood in the case where M is an operad, which acts on topological spaces. Axiomatized using model category structures.

7/13

< □ > < 同 > < 回 > < 回 > < 回 >

Lifting properties

Definition

 $f, g \in C$. We say that f is left-orthogonal to g (or g is right orthogonal to f) if for all i, j, there exists h such that:

Given a set of arrows X, we denote by X^r (resp. X^l) the set of its right (resp. left) orthogonals.

Examples

- Injective maps
- Surjective maps

Essentially surjective functor

Faithful funtor

Fully faithful functor.

3

→ < ∃ →</p>

▲ 西部

Proposition

- X^r is closed under pullbacks and retracts
- X¹ is closed under pushouts, retracts and transfinite composition.
- $\blacktriangleright X^{rlr} = X^r, X^{lrl} = X^l.$

Proposition (Small object argument)

In good cases:

- X^{rl} is the (closure under retract of) transfinite compositions of pushouts of arrows of X.
- Any arrow $f : u \to v$ factorises as an arrow of X^{rl} followed by an arrow of X^{l} .

The case of ω -categories

$$X = \{\iota_n : \partial D_n \to D_n\}$$

 X^r :

 X^{rl} :

	Μ.	Lucas,	LIPN
--	----	--------	------

1

イロト イヨト イヨト イヨト

Cofibrant replacements

- In our case, we call elements of X^{lr} the *cofibrations* and of X^r the *trivial cofibrations*.
- An ω -category C is "free on a palygraph" iff the arrow $\emptyset \to C$ is a cofibration (we also say that C is cofibrant)
- We say that \overline{C} it is a *cofibrant replacement* of *C* if it is cofibrant and $\overline{C} \rightarrow C$ is a trivial fibration.
- We are just factorizing the map $\emptyset \to C!$

12/13

Model category structure

Definition

A model category structure on a complete, cocomplete category C is the data of three classes of maps: W, C and F such that:

W has the 2-out-of-3 property

•
$$WC = F^{I}$$
, and $WF = C^{r}$.

Any arrow factors as a map in C (resp. CW) followed by a map in FW (resp. F).

M. Lucas, LIPN	١
----------------	---

13/13