Identities and bases in hypoplactic, sylvester, Baxter and stylic monoids

Duarte Chambel Ribeiro dc.ribeiro@campus.fct.unl.pt

Centro de Matemática e Aplicações \& Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal.

November 102022

FCT

NOVA SCHOOL OF SCIENCE \& TECHNOLOGY

REPÚBLICA PORTUGUESA

CIÊNCIA, TECNOLOGIA
E ENSINO SUPERIOR

The author was supported by national funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Centre for Mathematics and Applications).

Plactic-like monoids

Plactic monoid plac
Young tableau

1	1	2	3
2	3	4	
3			

Sylvester monoid sylv
Right strict binary search tree

Hypoplactic monoid hypo
Quasi-ribbon tableau

Baxter monoid baxt
Pair of twin binary search trees

- Elements of each monoid can be identified with combinatorial objects of a particular type;
- Insertion algorithms allows one to compute unique combinatorial objects for each word over an ordered alphabet;
- Each monoid arises from combinatorial Hopf algebras, whose bases are indexed by combinatorial objects (Giraudo 2012; Hivert et al. 2005; Krob and Thibon 1997).

Questions we wanted to answer:
(1) Do plactic-like monoids of higher rank embed into their corresponding monoids of lesser rank, or direct products of the latter?
(2) What are the varieties generated by plactic-like monoids of rank greater than or equal to 2 ?
(3) Can we obtain a characterization of the identities satisfied by plactic-like monoids?
(9) Can we obtain a finite basis for the varieties generated by the plactic-like monoids? And can we obtain their axiomatic rank?

Let $A:=\{1<2<\cdots\}$ be the infinite ordered alphabet and let
$A_{n}=\{1<2<\cdots<n\}$ be the ordered alphabet with n letters.

The plactic monoid

Young tableau

1	1	2	3	5	7
3	4	6			
5	5	7			
6					

- Rows weakly increasing left to right;
- Columns strictly increasing top to bottom;
- Left-justified, longer rows on top.
- Schensted's algorithm computes a unique tableau $\mathrm{P}_{\mathrm{plac}}(u)$ for each word $u \in A^{*}$.
- Define the congruence $\equiv_{\text {plac }}$ on A^{*} as follows: For $u, v \in A^{*}$,

$$
u \equiv_{\text {plac }} v \Longleftrightarrow \mathrm{P}_{\text {plac }}^{\rightarrow}(u)=\mathrm{P}_{\text {plac }}^{\rightarrow}(v) .
$$

- The factor monoid plac $:=A^{*} / \equiv_{\text {plac }}$ is the infinite-rank plactic monoid (Lascoux and Schützenberger 1981). Analogously, plac $_{n}:=A_{n}^{*} / \equiv_{\text {plac }}$ is the plactic monoid of finite rank n.

The following diagram commutes:

Identities and varieties

- A monoid identity, over an alphabet of variables X, is a formal equality $u \approx v$, where u and v are words in the free monoid X^{*}.
- A monoid M satisfies the identity $u \approx v$ if equality in M holds under every substitution of the variables of u and v by elements of M.
- The set of all identities satisfied by a monoid is its equational theory.
- An equational class of monoids is the class of all monoids which satisfy the same equational theory.
- A variety of monoids is a nonempty class of monoids closed under submonoids, homomorphic images and direct products.
- A nonempty class of monoids is a variety if and only if it is an equational class (Birkhoff 1935).

Identities and plactic-like monoids

Known facts about identities and the plactic monoids:

- plac ${ }_{2}$ satisfies exactly the same identities as the monoid of 2×2 upper triangular tropical matrices (Izhakian 2019) and the bicyclic monoid (Daviaud et al. 2018), hence, it satisfies Adian's identity

$$
\text { xyyxxyхуyх } \approx ~ x y y x y x х у y x
$$

- plac $_{3}$ satisfies the identity

$$
u v v u v u \approx u v u v v u
$$

where $u(x, y)$ and $v(x, y)$ are respectively the left and right side of Adian's identity, but does not satisfy Adian's identity itself (Kubat and Okniński 2015).

- plac ${ }_{n}$ does not satisfy any non-trivial identity of length less than or equal to n, hence, plac does not satisfy any non-trivial identity (Cain et al. 2017).
- Monoids of upper triangular matrices over the tropical semiring satisfy non-trivial identities (Izhakian 2014; Okniński 2015; Taylor 2017).
- Recently, a faithful tropical representation for plac ${ }_{n}$ was given by Marianne Johnson and Kambites (2021), thus showing that plac $_{n}$ satisfies a non-trivial identity.
- More recently, Cain et al. (2022a) gave faithful representations of the hypoplactic, stalactic, taiga, sylvester, Baxter and right patience sorting monoids of each finite rank as monoids of upper triangular matrices over certain semirings.

The shortest non-trivial identities satisfied by the hypoplactic, sylvester and Baxter monoids have been characterized by Cain and Malheiro (2018):

Monoid	Shortest identities
hypo	$\begin{gathered} x y x y \approx x y y x \approx y x x y \approx y x y x \\ x x y x \approx x y x x \end{gathered}$
sylv	$x y x y \approx y x x y$
sylv \#	$y x y x \approx y x x y$
baxt	$\begin{aligned} & y x x y x y \approx y x y x x y \\ & x y x y x y \approx x y y x x y \end{aligned}$

Bases and axiomatic rank

- If every identity in a set of identities Σ is a consequence of a subset \mathcal{B} of Σ, then \mathcal{B} is a basis of Σ.
- The axiomatic rank of Σ is the least natural number r such that Σ admits a basis \mathcal{B} where the number of distinct variables occurring in each identity in \mathcal{B} does not exceed r.
- If a variety \mathcal{V} is generated by a monoid with a finite number of generators, the minimal such number is called the basis rank of ν.

The variety generated by the bicyclic monoid has infinite axiomatic rank (Shneerson 1989). By Daviaud et al. 2018, Theorem 4.1, this implies that $\mathcal{V}_{\text {plac }_{2}}$ has infinite axiomatic rank.

The hypoplactic monoid

Quasi-ribbon tableau

1	2	4		
		5		
		6	6	
				7

- Rows weakly increasing left to right;
- Columns strictly increasing top to bottom;
- Leftmost cell in each row is below the rightmost cell of the previous row.
- The Krob-Thibon algorithm computes a unique quasi-ribbon tableau $\mathrm{P}_{\text {hypo }}^{\vec{~}}(u)$ for each word $u \in A^{*}$.
- Define the congruence $\equiv_{\text {hypo }}$ on A^{*} as follows: For $u, v \in A^{*}$,

$$
u \equiv_{\text {hypo }} v \Longleftrightarrow \mathrm{P}_{\text {hypo }}^{\vec{~}}(u)=\mathrm{P}_{\text {hypo }}^{\vec{~}}(v) .
$$

- The factor monoid hypo $:=A^{*} / \equiv$ hypo is the infinite-rank hypoplactic monoid (Krob and Thibon 1997). Analogously, hypo $_{n}:=A_{n}^{*} / \overline{\text { hypo }}$ is the hypoplactic monoid of finite rank n.

Example (Krob-Thibon algorithm)

Computing $\underset{\text { hypo }}{\rightarrow}$ (12654768):

A consequence of the Krob-Thibon insertion algorithm:

Corollary (Novelli 2000)

Let $u, v \in A^{*}$. Then, $u \equiv_{\text {hypo }} v$ if and only if u and v share the same content and inversions.

A word u with $\operatorname{supp}(u)=\left\{a_{1}<\cdots<a_{k}\right\}$ has an $a_{i+1}-a_{i}$ inversion if, when reading u from left to right, a_{i+1} occurs before a_{i}.

Example

- 31214 has 3-2 and 2-1 inversions;
- 21341 has a 2-1 inversion;
- 724 has a $7-4$ inversion.

Embeddings of the hypoplactic monoids

For any $i, j \in A$, with $i<j$, define a map from A to hypo $_{2}$ in the following way: For any $a \in A$,

$$
a \longmapsto \begin{cases}{[1]_{\mathrm{hypo}_{2}}} & \text { if } a=i ; \\ {[2]_{\mathrm{hypo}_{2}}} & \text { if } a=j ; \\ {[21]_{\mathrm{hypo}_{2}}} & \text { if } i<a<j ; \\ {[\varepsilon]_{\mathrm{hypo}_{2}}} & \text { otherwise; }\end{cases}
$$

and extend it to a homomorphism from A^{*} to hypo ${ }_{2}$, which factors to give a homomorphism $\varphi_{\text {hypo }}^{i j}:$ hypo \longrightarrow hypo $_{2}$.

Lemma (Cain, Malheiro, and R. 2022)
Let $u, v \in A_{n}^{*}$. Then, $u \equiv_{\text {hypo }} v$ if and only if

$$
\varphi_{\text {hypo }}^{i j}\left([u]_{\text {hypo }}\right)=\varphi_{\text {hypo }}^{i j}\left([v]_{\text {hypo }}\right),
$$

for all $1 \leq i<j \leq n$.

Example

$$
\begin{aligned}
& {[31214]_{\text {hypo }} \underset{\varphi_{12}}{\longrightarrow} \quad[121]_{\text {hypo }_{2}}} \\
& {[31214]_{\text {hypo }} \underset{\varphi_{13}}{\longrightarrow} \quad[21211]_{\text {hypo }_{2}}} \\
& {[31214]_{\text {hypo }} \underset{\varphi_{14}}{\longrightarrow}[2112112]_{\text {hypo }_{2}}} \\
& {[31214]_{\text {hypo }} \underset{\varphi_{23}}{\longrightarrow} \quad[21]_{\text {hypo }_{2}}} \\
& {[31214]_{\text {hypo }} \underset{\varphi_{24}}{\longrightarrow} \quad[2112]_{\text {hypo }_{2}}} \\
& {[31214]_{\text {hypo }} \underset{\varphi_{34}}{\longrightarrow} \quad[12]_{\text {hypo }_{2}}}
\end{aligned}
$$

Example

$$
\begin{aligned}
& {[21341]_{\text {hypo }} \underset{\varphi_{12}}{\longrightarrow} \quad[211]_{\text {hypo }_{2}}} \\
& {[21341]_{\text {hypo }} \underset{\varphi_{13}}{\longrightarrow} \quad[21121]_{\text {hypo }_{2}}} \\
& {[21341]_{\text {hypo }} \underset{\varphi_{14}}{\longrightarrow}[2112121]_{\text {hypo }_{2}}} \\
& {[21341]_{\text {hypo }} \underset{\varphi_{23}}{\longrightarrow} \quad[12]_{\text {hypo }_{2}}} \\
& {[21341]_{\text {hypo }} \underset{\varphi_{24}}{\longrightarrow} \quad[1212]_{\text {hypo }_{2}}} \\
& {[21341]_{\text {hypo }} \underset{\varphi_{34}}{\longrightarrow} \quad[12]_{\text {hypo }_{2}}}
\end{aligned}
$$

Example

$$
\begin{array}{lll}
{[724]_{\text {hypo }}} & \underset{\varphi_{24}}{\longmapsto} & {[12]_{\text {hypo }_{2}}} \\
{[724]_{\text {hypo }}} & \underset{\varphi_{27}}{\longmapsto} & {[2121]_{\text {hypo }_{2}}} \\
{[724]_{\text {hypo }}} & \underset{\varphi_{47}}{\longmapsto} & {[21]_{\text {hypo }_{2}}} \\
{[724]_{\text {hypo }}} & \underset{\varphi_{23}}{\longmapsto} & {[1]_{\text {hypo }_{2}}} \\
{[724]_{\text {hypo }}} & \underset{\varphi_{56}}{\longmapsto} & {[\varepsilon]_{\text {hypo }_{2}}}
\end{array}
$$

For each $n \geq 3$, let $I_{n}:=\{(i, j): 1 \leq i<j \leq n\}$, and consider the map

$$
\phi_{\text {hypo }_{n}}: \text { hypo }_{n} \longrightarrow \prod_{I_{n}} \text { hypo }_{2}
$$

whose (i, j)-th component is given by $\varphi_{\text {hypo }}^{i j}\left([w]_{\text {hypo }}\right)$, for $w \in A_{n}^{*}$ and $(i, j) \in I_{n}$.

Proposition (Cain, Malheiro, and R. 2022)
The map $\phi_{\mathrm{hypo}_{n}}$ is an embedding.

Theorem (Cain, Malheiro, and R. 2022)

For any $n \geq 2$, hypo and hypo $_{n}$ satisfy exactly the same identities.

Proposition (Cain, Malheiro, and R. 2022)
The basis rank of $\mathcal{V}_{\text {hypo }}$ is 2 .

Identities satisfied by hypo

Theorem (Cain, Malheiro, and R. 2022)

The identities $u \approx v$ satisfied by hypo are those balanced identities such that, for any variables x, y that occur in u and v, u admits $x y$ as a subsequence if and only if v does too.

Corollary (Cain, Malheiro, and R. 2022)
$\mathcal{V}_{\text {hypo }}$ is the varietal join $\mathcal{C} \vee \mathcal{V}\left(\bigodot_{3}\right)$, and is generated by the free monogenic monoid and the monoid \mathfrak{C}_{3}, the 5-element monoid of all order preserving and extensive transformations of the chain

$$
1<2<3
$$

Corollary (Cain, Malheiro, and R. 2022)

The decision problem Check-Id(hypo) belongs to the complexity class P.

Corollary (Cain, Malheiro, and R. 2022)

The shortest non-trivial identity, with n variables, satisfied by hypo, is of length $n+2$.

Example

The identity

$$
x a_{1} \ldots a_{n-1} x x \approx x x a_{1} \ldots a_{n-1} x
$$

is a minimum-length non-trivial identity, with n variables, satisfied by hypo.

Finite basis and axiomatic rank of $\mathcal{V}_{\text {hypo }}$

Theorem (Cain, Malheiro, and R. 2022)

$\mathcal{V}_{\text {hypo }}$ admits a finite basis, consisting of the following identities:

$$
\begin{aligned}
& x y z x t y \approx y x z x t y \\
& x z x y t x \approx x z y x t x \\
& x z y t x y \approx x z y t y x .
\end{aligned}
$$

Proposition (Cain, Malheiro, and R. 2022)
Neither of the identities (L) or (R) is a consequence of the set of non-trivial identities, satisfied by hypo, over an alphabet with four variables, excluding itself (but not the other) and equivalent identities.

Corollary (Cain, Malheiro, and R. 2022)
The axiomatic rank of $\mathcal{V}_{\text {hypo }}$ is 4 .

The sylvester monoid

Right strict binary search tree

Label of each node is:

- greater than or equal to the label of every node in its left subtree;
- strictly less than the label of every node in its right subtree.
- The Hivert-Novelli-Thibon algorithm computes a unique right strict binary search tree $\mathrm{P}_{\text {sylv }}^{\leftarrow}(u)$ for each word $u \in A^{*}$.
- Define the congruence $\equiv_{\text {sylv }}$ on A^{*} as follows: For $u, v \in A^{*}$,

$$
u \equiv_{\text {sylv }} v \Longleftrightarrow \mathrm{P}_{\text {sylv }}^{\leftarrow}(u)=\mathrm{P}_{\text {sylv }}^{\leftarrow}(v)
$$

- The factor monoid sylv $:=A^{*} / \equiv_{\text {sylv }}$ is the infinite-rank sylvester monoid (Hivert et al. 2005). Analogously, sylv $_{n}:=A_{n}^{*} / \equiv_{\text {sylv }}$ is the sylvester monoid of finite rank n.

Example (Hivert-Novelli-Thibon algorithm)

Computing $\mathrm{P}_{\text {sylv }}^{\leftarrow}(1213243)$:

A consequence of the Hivert-Novelli-Thibon insertion algorithm:

Proposition (Cain, Malheiro, and R. 2021)

Let $u, v \in A^{*}$. Then, $u \equiv_{\text {sylv }} v$ if and only if u and v share exactly the same content and right precedences.

A word u has a b-a right precedence if, when reading u from right to left, b is the least element greater than a which occurs before the first occurrence of a, for $a, b \in \operatorname{supp}(u)$. The number of occurrences of b before the first occurrence of a is the index of the right precedence.

Example

- 3123 has a 2-1 and a 3-2 right precedence, both of index 1;
- 2313 has a 3-1 right precedence of index 1 and a 3-2 right precedence of index 2;
- 3132 has a 2-1 right precedence of index 1 .

Embeddings of the sylvester monoids

For any $i, j \in A$, with $i<j$, define a map from A to sylv $_{2}$ in the following way: For any $a \in A$,

$$
a \longmapsto \begin{cases}{[1]_{\text {sllv }_{2}}} & \text { if } a=i ; \\ {[2]_{\text {sllv }_{2}}} & \text { if } a=j ; \\ {[21]_{\text {sylv }_{2}}} & \text { if } i<a<j ; \\ {[\varepsilon]_{\text {sylv }_{2}}} & \text { otherwise; }\end{cases}
$$

and extend it to a homomorphism from A^{*} to sylv $_{2}$, which factors to give a homomorphism $\varphi_{\text {sylv }}^{i j}$: sylv \longrightarrow sylv $_{2}$.

Lemma (Cain, Malheiro, and R. 2021)
Let $u, v \in A_{n}^{*}$. Then, $u \equiv_{\text {sylv }} v$ if and only if

$$
\varphi_{\text {sylv }}^{i j}\left([u]_{\text {sylv }}\right)=\varphi_{\text {sylv }}^{i j}\left([v]_{\text {sylv }}\right),
$$

for all $1 \leq i<j \leq n$.

Example

$$
\begin{aligned}
& {[3123]_{\mathrm{sylv}_{3}} \underset{\varphi_{4 \text { silv }}^{12}}{\longrightarrow}}
\end{aligned}{ }^{[3123]_{\mathrm{sylv}_{2}}}
$$

Example

$$
\begin{aligned}
& {[2313]_{\text {sylv }_{3}} \underset{\varphi_{\text {sylv }}^{12}}{\longrightarrow} \quad[21]_{\text {sylv }_{2}}} \\
& {[2313]_{\text {sylv }} \underset{\varphi_{\text {sulv }}^{13}}{\longrightarrow}[21212]_{\text {sylv }_{2}}} \\
& {[2313]_{\text {sylv }_{3}} \underset{\varphi_{2 \sqrt{23}}}{\longrightarrow} \quad[122]_{\text {sylv }_{2}}}
\end{aligned}
$$

For each $n \geq 3$, let $I_{n}:=\{(i, j): 1 \leq i<j \leq n\}$, and consider the map

$$
\phi_{\text {sylv }_{n}}: \text { sylv }_{n} \longrightarrow \prod_{I_{n}} \text { sylv }_{2},
$$

whose (i, j)-th component is given by $\varphi_{\text {sylv }}^{i j}\left([w]_{\text {sylv }}\right)$, for $w \in A_{n}^{*}$ and $(i, j) \in I_{n}$.

Proposition (Cain, Malheiro, and R. 2021)

The map $\phi_{\text {sylv }_{n}}$ is an embedding.

Theorem (Cain, Malheiro, and R. 2021)

For any $n \geq 2$, sylv and sylv ${ }_{n}$ satisfy exactly the same identities.

Proposition (Cain, Malheiro, and R. 2021)
The basis rank of $\mathcal{V}_{\text {sylv }}$ is 2 .

Identities satisfied by sylv

Theorem (Cain, Malheiro, and R. 2021)

The identities $u \approx v$ satisfied by sylv are those balanced identities such that, for any $x \in \operatorname{supp}(u \approx v)$, the longest suffix of u where x does not occur has the same content as the longest suffix of v where x does not occur.

Corollary (Cain, Malheiro, and R. 2021)
The decision problem Check-Id(sylv) belongs to the complexity class P.

Corollary (Cain, Malheiro, and R. 2021)

The shortest non-trivial identity, with n variables, satisfied by sylv, is of length $n+2$.

Example

The identity

$$
x y a_{1} \ldots a_{n-2} y x \approx y x a_{1} \ldots a_{n-2} y x
$$

is a minimum-length non-trivial identity, with n variables, satisfied by sylv.

Finite basis and axiomatic rank of $\mathcal{V}_{\text {sylv }}$

Theorem (Cain, Malheiro, and R. 2021)

$\mathcal{V}_{\text {sylv }}$ admits a finite basis, consisting of the following identity:

$$
\begin{equation*}
x y z x t y \approx y x z x t y . \tag{L}
\end{equation*}
$$

Proposition (Cain, Malheiro, and R. 2021)
The identity (L) is not a consequence of the set of non-trivial identities, satisfied by sylv, over an alphabet with four variables, excluding itself and equivalent identities.

Corollary (Cain, Malheiro, and R. 2021)
The axiomatic rank of $\mathcal{V}_{\text {sylv }}$ is 4 .

The \#-sylvester monoid

Left strict binary search tree

Label of each node is:

- strictly greater than the label of every node in its left subtree;
- less than or equal to the label of every node in its right subtree.
- An analogue of the Hivert-Novelli-Thibon algorithm computes a unique left strict binary search tree $\mathrm{P}_{\text {sylv }}^{\rightarrow}(u)$ for each word $u \in A^{*}$.
- Define the congruence $\equiv_{\text {sylv }}$ on A^{*} as follows: For $u, v \in A^{*}$,

$$
u \equiv_{\text {sylv } \#} v \Longleftrightarrow \mathrm{P}_{\text {sylv }}^{\rightarrow}(u)=\mathrm{P}_{\text {sylv\# }}^{\rightarrow}(v) .
$$

- The factor monoid sylv $\#:=A^{*} / \overline{=}_{\text {sylv }}$ is the infinite-rank \#-sylvester monoid. Analogously, sylv $\#_{n}^{\#}:=A^{*} / \equiv_{\text {sylv }_{n}^{\#}}$ is the \#-sylvester monoid of finite rank n.
- For each $n \in \mathbb{N}$, sylv ${ }_{n}$ is anti-isomorphic to sylv $\#$.

Proposition (Cain, Malheiro, and R. 2021)

There is no anti-isomorphism between sylv and sylv\#.

Proposition (Cain, Malheiro, and R. 2021)

Let $u, v \in A^{*}$. Then, $u \equiv_{\text {sylv } \text { } v \text { if and only if } u \text { and } v \text { share exactly }}$ the same content and left precedences.

The Baxter monoid

Pair of twin binary search trees

- Consists of a left strict binary search tree and a right strict binary search tree;
- The trees have the same content and their canopies are complementary.
- For each $u \in A^{*}$, the pair of binary search trees

$$
\left(\mathrm{P}_{\text {sylv }}^{\rightarrow} \underset{\text { \# }}{\rightarrow}(u), \mathrm{P}_{\text {sylv }}^{\leftarrow}(u)\right)
$$

is a pair of twin binary search trees (Giraudo 2012,
Proposition 4.5), denoted by $\mathrm{P}_{\text {baxt }}(u)$.

- Define the congruence $\equiv_{\text {baxt }}$ on A^{*} as follows: For $u, v \in A^{*}$,

$$
u \equiv_{\text {baxt }} v \Longleftrightarrow \mathrm{P}_{\text {baxt }}(u)=\mathrm{P}_{\text {baxt }}(v)
$$

- The factor monoid baxt $:=A^{*} / \bar{\equiv}_{\text {baxt }}$ is the infinite-rank Baxter monoid (Giraudo 2012). Analogously, baxt $_{n}:=A_{n}^{*} / \overline{\text { baxt }}$ is the Baxter monoid of finite rank n.

Corollary (Cain, Malheiro, and R. 2021)
 Let $u, v \in A^{*}$. Then, $u \equiv_{\text {baxt }} v$ if and only if u and v share exactly the same content and right and left precedences.

Identities satisfied by baxt

Theorem (Cain, Malheiro, and R. 2021)

For any $n \geq 2$, baxt and baxt ${ }_{n}$ satisfy exactly the same identities.

Theorem (Cain, Malheiro, and R. 2021)

The identities $u \approx v$ satisfied by baxt are balanced identities such that, for any $x \in \operatorname{supp}(u \approx v)$, the longest prefix of u where x does not occur has the same content as the longest prefix of v where x does not occur, and the longest suffix of u where x does not occur has the same content as the longest suffix of v where x does not occur.

Corollary (Cain, Malheiro, and R. 2021)

The decision problem Check-Id(baxt) belongs to the complexity class P.

Corollary (Cain, Malheiro, and R. 2021)

The shortest non-trivial identity, with n variables, satisfied by baxt, is of length $n+4$.

Example

The identity

$$
x y x y a_{1} \ldots a_{n-2} y x \approx x y y x a_{1} \ldots a_{n-2} y x
$$

is a minimum-length non-trivial identity, with n variables, satisfied by baxt.

Corollary (Cain, Malheiro, and R. 2021)

The variety generated by baxt is strictly contained in the variety generated by plac ${ }_{2}$.

Finite basis and axiomatic rank of $\mathcal{V}_{\text {baxt }}$

Theorem (Cain, Malheiro, and R. 2021)

$\mathcal{V}_{\text {baxt }}$ admits a finite basis consisting of the following identities:

$$
\begin{aligned}
& \text { xzytxyrxsy } \approx x z y t y x r x s y ; \\
& \text { xzytxyrysx } \approx x z y t y x r y s x .
\end{aligned}
$$

Proposition (Cain, Malheiro, and R. 2021)

Neither of the identities (O) or (E) is a consequence of the set of nontrivial identities, satisfied by baxt, over an alphabet with six variables, excluding itself (but not the other) and equivalent identities.

Corollary (Cain, Malheiro, and R. 2021)

The axiomatic rank of $\mathcal{V}_{\text {baxt }}$ is 6 .

Other plactic-like monoids

Stalactic monoid
stal
Stalactic tableau

1	2	4	3
1	2		3
	2		3

Taiga monoid taig
Binary search tree with multiplicities

Right patience-sorting monoid rPS rPS-tableau

Cain et al. (2022a) have studied the equational theories and varieties of these monoids by giving faithful representations of these monoids of each finite rank as monoids of upper triangular matrices over certain semirings.
They also showed that neither $\mathcal{V}_{\text {sylv }}$ nor $\mathcal{V}_{\text {baxt }}$ are contained in the join of \mathcal{C} and any variety generated by a finite monoid.

The stylic monoid styl ${ }_{n}$

N -tableau

5	6							
2	5	6						
1	2	3	4	5				

- Young tableau with rows strictly increasing left to right;
- Each row contained in the one below it;
- Left-justified, longer rows on bottom.
- The right N-algorithm computes a unique N-tableau $\mathrm{P}_{\text {styl }}^{\rightarrow}(u)$ for each word $u \in A^{*}$.
- Define the congruence $\equiv_{\text {styl }}$ on A^{*} as follows: For $u, v \in A^{*}$,

$$
u \equiv_{\text {styl }} v \Longleftrightarrow \mathrm{P}_{\text {styl }}^{\rightarrow}(u)=\mathrm{P}_{\text {styl }}^{\rightarrow}(v) .
$$

- The factor monoid styl $I_{n}:=A_{n}^{*} / \equiv_{\text {styl }}$ is the stylic monoid of finite rank n (Abram and Reutenauer 2022).

Example (Krob-Thibon algorithm)

Computing $\mathrm{P}_{\text {styl }}^{\rightarrow}(4231)$:

- styl $_{n}$ is a finite quotient of plac $_{n}$, defined by the action of words over A_{n} on the left of columns of Young tableaux, by Schensted left insertion.
- It is presented by the Knuth relations and the relations $a^{2} \equiv a$, with $a \in \mathrm{~A}_{n}$.
- It is a finite \mathcal{J}-trivial monoid.

Pseudovarieties

- A pseudovariety of monoids is a nonempty class of finite monoids closed under submonoids, homomorphic images and finitary direct products.
- An equational pseudovariety consists of all the finite monoids in some variety.
- An equational pseudovariety is defined by its equational theory.
- A finitely generated pseudovariety is equational.
- \mathcal{J}_{K} is the pseudovariety in Simon's hierarchy of \mathcal{J}-trivial monoids which corresponds to the class of all piecewise testable languages of height k, in Eilenberg's correspondence.
- \mathscr{J}_{K} is an equational pseudovariety, and its equational theory is the set J_{k} of all identities $u \approx v$ such that u and v share the same subsequences of length $\leq k$.
- \mathcal{J}_{1} admits a finite basis, consisting of the following identities:

$$
x^{2} \approx x \quad \text { and } \quad x y \approx y x
$$

- \mathcal{J}_{2} admits a finite basis, consisting of the following identities:

$$
x y x z x \approx x y z x \quad \text { and } \quad(x y)^{2} \approx(y x)^{2}
$$

- \mathcal{J}_{3} admits a finite basis, consisting of the following identities:

$$
\begin{aligned}
x y x^{2} z x & \approx x y x z x, \\
x y z x^{2} t z & \approx x y x z x^{2} t x, \\
z y x^{2} z t x & \approx z y x^{2} z x t x, \\
(x y)^{3} & \approx(y x)^{3} .
\end{aligned}
$$

- \mathcal{J}_{k} is non-finitely based, for $k \geq 4$.

The tropical semiring and monoids of tropical matrices

- The tropical (max-plus) semiring \mathbb{T} is the set $\mathbb{R} \cup\{-\infty\}$ under the operations $a \oplus b=\max \{a, b\}$ and $a \otimes b=a+b$.
- The set of upper unitriangular $n \times n$ matrices with entries in \mathbb{T} forms a monoid $U_{n}(\mathbb{T})$ under matrix multiplication induced by the operations in \mathbb{T}.
- For each $n \in \mathbb{N}$, the monoid $U_{n+1}(\mathbb{T})$ generates $\mathcal{V}\left(J_{n}\right)$, that is, the variety whose equational theory is $J_{n}(\mathrm{M}$. Johnson and Fenner 2019).

Tropical representations of the stylic monoids

Define the map $\rho_{n}: A_{n}^{*} \rightarrow U_{n+1}(\mathbb{T})$ as follows:

$$
\rho_{n}(x)_{i, j}= \begin{cases}0 & \text { if } i=j ; \\ 1 & \text { if } i \leq n+1-x<j ; \\ -\infty & \text { otherwise. }\end{cases}
$$

for each $x \in A_{n}$, extending multiplicatively to all of A_{n}^{*} and defining $\rho_{n}(\varepsilon)=I_{(n+1) \times(n+1)}$.

Example

The images of 2 and of 4213 under ρ_{4} are, respectively,

$$
\left[\begin{array}{ccccc}
0 & -\infty & -\infty & 1 & 1 \\
-\infty & 0 & -\infty & 1 & 1 \\
-\infty & -\infty & 0 & 1 & 1 \\
-\infty & -\infty & -\infty & 0 & -\infty \\
-\infty & -\infty & -\infty & -\infty & 0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ccccc}
0 & 1 & 2 & 2 & 3 \\
-\infty & 0 & 1 & 1 & 2 \\
-\infty & -\infty & 0 & 1 & 2 \\
-\infty & -\infty & -\infty & 0 & 1 \\
-\infty & -\infty & -\infty & -\infty & 0
\end{array}\right]
$$

Proposition (Aird and R. 2022)

The map ρ_{n} induces a well-defined morphism from styl ${ }_{n}$ to $U_{n+1}(\mathbb{T})$.
Denote by ϱ_{n} the induced morphism from styl ${ }_{n}$ to $U_{n+1}(\mathbb{T})$.

Example

The image of $[4213]_{\text {styl }}{ }_{4}$ under ϱ_{4} is the same as that of 4213 under ρ_{4}, that is,

4				
2	4		ϱ_{4}	
1	2	3	4	

-\infty \& 0 \& 1 \& 1 \& 2

-\infty \& -\infty \& 0 \& 1 \& 2

-\infty \& -\infty \& -\infty \& 0 \& 1

-\infty \& -\infty \& -\infty \& -\infty \& 0\end{array}\right]\)

Lemma (Aird and R. 2022)

Let $w \in A_{n}^{*}, a \in A_{n}$, and $k \in \mathbb{N}$. Then, a occurs in the k-th row of $N(w)$ if and only if there exists $j \in\{1, \ldots, n+1\}$, with $n+1-a<j$, such that $\rho_{n}(w)_{n+1-a, j}=k$, and $\rho_{n}(w)_{n+2-a, j}=k-1$.

Theorem (Aird and R. 2022)

The morphism $\varrho_{n}:$ styl $_{n} \rightarrow U_{n+1}(\mathbb{T})$ is a faithful representation of styl $_{n}$.

Therefore, all identities in J_{n} are satisfied by styl ${ }_{n}$.

Identities satisfied by styl ${ }_{n}$

Theorem (Aird and R. 2022)

Let $n \in \mathbb{N}$ and let $u \approx v$ be a non-trivial identity satisfied by styl ${ }_{n}$. Then, $u \approx v \in J_{n}$.

Corollary (Aird and R. 2022)

For each $n \in \mathbb{N}$, styl ${ }_{n}$ generates the variety $\mathcal{V}\left(J_{n}\right)$ and the pseudovariety \mathcal{J}_{n}. Furthermore, $\mathcal{V}\left(s t y l^{n}\right) \subsetneq \mathcal{V}\left(\right.$ styl $\left._{n+1}\right)$, and styl ${ }_{n}$ is finitely based if and only if $n \leq 3$.

Corollary (Aird and R. 2022)

For each $n \in \mathbb{N}$, the identity checking problem for styl $_{n}$ is decidable in linearithmic time. Therefore, Check-Id(styl ${ }_{n}$) is in the complexity class P.

Corollary (Aird and R. 2022)

$\mathcal{V}\left(\right.$ styl $\left._{n}\right)$ has uncountably many subvarieties, for $n \in \mathbb{N}$ such that $n \geq 3$.

Corollary (Aird and R. 2022)
\mathcal{V} (hypo) is the varietal join $\mathcal{C} \vee \mathcal{V}\left(\right.$ styl $\left._{2}\right)$, and is generated by the free commutative monoid and styl ${ }_{2}$.

Finite basis problem for styl ${ }_{n}$ with involution

- An involution on a semigroup S is a unary operation * on S such that $\left(x^{*}\right)^{*}=x$ and $(x y)^{*}=y^{*} x^{*}$.
- An involution semigroup is a semigroup S together with an involution *, denoted ($S,{ }^{*}$).
- The unique order-reversing permutation on a finite ordered alphabet A_{n} induces an involution * of the stylic monoid of rank n.
- The operation of skew transposition, denoted ${ }^{*}$, is an involution on the monoid of unitriangular matrices over the tropical semiring.

Proposition (Aird and R. 2022)

The morphism $\varrho_{n}:$ sty $_{n} \rightarrow U_{n+1}(\mathbb{T})$ extends to a faithful morphism from $\left(\right.$ styl $\left._{n},{ }^{*}\right)$ to $\left(U_{n+1}(\mathbb{T}),{ }^{*}\right)$.

Proposition (Aird and R. 2022)

For each $n \geq 2$, $\left(\right.$ styl $\left._{n},{ }^{*}\right)$ satisfies the identity

$$
x^{*} x^{n-1} \approx x^{*} x^{n}
$$

while $\left(U_{n+1}(\mathbb{T}),{ }^{*}\right)$ does not.

Theorem (Aird and R. 2022)

The involution monoid $\left(\operatorname{styl}_{n},{ }^{*}\right)$ is finitely based if and only if $n=1$.

Thank you for your attention!

References I

- Abram, A. and Reutenauer, Ch. (2022). "The Stylic Monoid". In: Semigroup Forum. issn: 1432-2137. doi: 10.1007/s00233-022-10285-3. url: https://doi.org/10.1007/s00233-022-10285-3.
Aird, Thomas and Ribeiro, Duarte (2022). Tropical Representations and Identities of the Stylic Monoid. doi: 10.48550/ARXIV.2206.11725. url: https://arxiv.org/abs/2206.11725.
國 Birkhoff, Garrett (1935). "On the Structure of Abstract Algebras". In: Mathematical Proceedings of the Cambridge Philosophical Society 31.4, pp. 433-454. doi: 10.1017/S0305004100013463.

References II

冨 Cain, Alan J., Johnson, Marianne, Kambites, Mark, and Malheiro, António (2022a). "Representations and identities of plactic-like monoids". In: J. Algebra 606, pp. 819-850. issn: 0021-8693. doi: 10.1016/j.jalgebra.2022.04.033. url: https://doi.org/10.1016/j.jalgebra.2022.04.033.
R Cain, Alan J., Klein, Georg, Kubat, Lukasz, Malheiro, António, and Okniński, Jan (2017). A note on identities in plactic monoids and monoids of upper-triangular tropical matrices. arXiv: 1705.04596 [math.CO].

- Cain, Alan J. and Malheiro, António (2018). "Identities in plactic, hypoplactic, sylvester, Baxter, and related monoids". In: Electron. J. Combin. 25.3, Paper No. 3.30, 19. doi: 10.37236/6873. url: https://doi.org/10.37236/6873.

References III

盏 Cain, Alan J., Malheiro, António, and Ribeiro, Duarte (2021). Identities and bases in the sylvester and Baxter monoids. arXiv: 10.48550. doi: 10.48550/ARXIV .2106.00733. url: https://arxiv.org/abs/2106.00733.

- (2022b). "Identities and bases in the hypoplactic monoid". In: Comm. Algebra 50.1, pp. 146-162. issn: 0092-7872. doi: 10.1080/00927872.2021.1955901. url: https://doi.org/10.1080/00927872.2021.1955901.
(Daviaud, Laure, Johnson, Marianne, and Kambites, Mark (2018). "Identities in upper triangular tropical matrix semigroups and the bicyclic monoid". In: J. Algebra 501, pp. 503-525. issn: 0021-8693. doi: 10.1016/j.jalgebra.2017.12.032. url: https://doi.org/10.1016/j.jalgebra.2017.12.032.

References IV

國 Giraudo，Samuele（2012）．＂Algebraic and combinatorial structures on pairs of twin binary trees＂．In：J．Algebra 360， pp．115－157．issn：0021－8693．doi：
10．1016／j．jalgebra．2012．03．020．url：
https：／／doi．org／10．1016／j．jalgebra．2012．03．020．
国 Hivert，F．，Novelli，J．－C．，and Thibon，J．－Y．（2005）．＂The algebra of binary search trees＂．In：Theoret．Comput．Sci．339．1， pp．129－165．issn：0304－3975．doi： 10．1016／j．tcs．2005．01．012．url： https：／／doi．org／10．1016／j．tcs．2005．01．012．
國 Izhakian，Zur（2014）．＂Semigroup identities in the monoid of triangular tropical matrices＂．In：Semigroup Forum 88．1， pp．145－161．issn：0037－1912．doi： 10．1007／s00233－013－9507－6．url：
https：／／doi．org／10．1007／s00233－013－9507－6．

References V

围 Izhakian, Zur (2019). "Tropical plactic algebra, the cloaktic monoid, and semigroup representations". In: J. Algebra 524, pp. 290-366. issn: 0021-8693. doi: 10.1016/j.jalgebra.2018.12.014. url: https://doi.org/10.1016/j.jalgebra.2018.12.014.
(Johnson, M. and Fenner, P. (2019). "Identities in unitriangular and gossip monoids". In: Semigroup Forum 98.2, pp. 338-354. issn: 0037-1912. doi: 10.1007/s00233-019-09996-x. url: https://doi.org/10.1007/s00233-019-09996-x.

- Johnson, Marianne and Kambites, Mark (2021). "Tropical representations and identities of plactic monoids". In: Trans. Amer. Math. Soc. 374.6, pp. 4423-4447. issn: 0002-9947. doi: 10.1090/tran/8355. url:
https://doi.org/10.1090/tran/8355.

References VI

國 Krob, Daniel and Thibon, Jean-Yves (1997). "Noncommutative symmetric functions IV: Quantum linear groups and Hecke algebras at $q=0$ ". In: J. Algebraic Combin. 6.4, pp. 339-376. issn: 0925-9899. doi: 10.1023/A:1008673127310. url: https://doi.org/10.1023/A:1008673127310.

- Kubat, Lukasz and Okniński, Jan (2015). "Identities of the plactic monoid". In: Semigroup Forum 90.1, pp. 100-112. issn: 0037-1912. doi: 10.1007/s00233-014-9609-9. url:
https://doi.org/10.1007/s00233-014-9609-9.
䍰 Lascoux, Alain and Schützenberger, Marcel-P. (1981). "Le monoïde plaxique". In: Noncommutative structures in algebra and geometric combinatorics (Naples, 1978). Vol. 109. Quad. "Ricerca Sci." CNR, Rome, pp. 129-156.

References VII

固 Novelli, Jean-Christophe (2000). "On the hypoplactic monoid". In: Discrete Math. 217.1-3. Formal power series and algebraic combinatorics (Vienna, 1997), pp. 315-336. issn: 0012-365X. doi: 10.1016/S0012-365X (99) 00270-8. url: https://doi.org/10.1016/S0012-365X (99)00270-8.

- Okniński, Jan (2015). "Identities of the semigroup of upper triangular tropical matrices". In: Comm. Algebra 43.10, pp. 4422-4426. issn: 0092-7872. doi: 10.1080/00927872.2014.946141. url: https://doi.org/10.1080/00927872.2014.946141.
Shneerson, Lev M. (1989). "On the axiomatic rank of varieties generated by a semigroup or monoid with one defining relation". In: Semigroup Forum 39.1, pp. 17-38. issn: 0037-1912. doi: 10.1007/BF02573281. url: https://doi.org/10.1007/BF02573281.

References VIII

E
Taylor, Matthew (2017). "On upper triangular tropical matrix semigroups, tropical matrix identities and T-modules". PhD thesis. The University of Manchester (United Kingdom).

