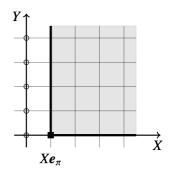
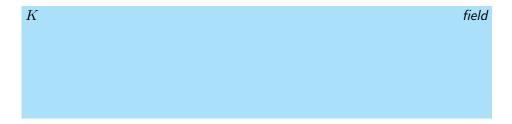
Gröbner bases of syzygies and polynomial matrix multiplication

Algebraic rewriting seminar

Simone Naldi (jw V. Neiger) XLIM – Université de Limoges

December 6th. 2021





field

K $R = K[X_1, X_2, \dots, X_r]$

ring of r-variate polynomials over K

field

$$K = K[X_1, X_2, \dots, X_r]$$
$$\mathcal{M} \subset R^n$$

τ7

ring of r-variate polynomials over KR-submodule of R^n

Gröbner bases of syzygies and polynomial matrix multiplication

$$K$$

$$R = K[X_1, X_2, \dots, X_r]$$

$$\mathcal{M} \subset R^n$$

$$D = \dim_K(R^n / \mathcal{M})$$

S. Naldi, V. Neiger

1/20

ring of r-variate polynomials over KR-submodule of R^n co-dimension

field

Xim Muniversité Université Profess

field

$$K$$

$$R = K[X_1, X_2, \dots, X_r]$$

$$\mathcal{M} \subset R^n$$

$$D = \dim_K(R^n/\mathcal{M})$$

$$f_1, \dots, f_m \in R^n/\mathcal{M}$$

- -

ring of r-variate polynomials over KR-submodule of R^n co-dimension input elements (row vectors)

K $R = K[X_1, X_2, \dots, X_r]$ $\mathcal{M} \subset R^n$ $D = \dim_K(R^n/\mathcal{M})$ $f_1, \dots, f_m \in R^n/\mathcal{M}$ $F = (f_1, \dots, f_m) \in R^{m \times n}$

ring of r-variate polynomials over KR-submodule of R^n co-dimension input elements (row vectors) matrix with rows f_1, \ldots, f_m

field

K $R = K[X_1, X_2, \dots, X_r]$ $\mathcal{M} \subset \mathbb{R}^n$ $D = \dim_K(\mathbb{R}^n/\mathcal{M})$ $f_1,\ldots,f_m\in R^n/\mathcal{M}$ $\boldsymbol{F} = (\boldsymbol{f}_1, \ldots, \boldsymbol{f}_m) \in R^{m \times n}$

ring of r-variate polynomials over K*R*-submodule of \mathbb{R}^n co-dimension input elements (row vectors) matrix with rows f_1, \ldots, f_m

The goal is to compute syzygies, that is vectors $oldsymbol{p}=(p_1,\ldots,p_m)\in R^{1 imes m}$

$$p_1 \boldsymbol{f}_1 + \dots + p_m \boldsymbol{f}_m = \boldsymbol{0}$$

field

K $R = K[X_1, X_2, \dots, X_r]$ $\mathcal{M} \subset R^n$ $D = \dim_K(R^n / \mathcal{M})$ $f_1, \dots, f_m \in R^n / \mathcal{M}$ $F = (f_1, \dots, f_m) \in R^{m \times n}$

ring of r-variate polynomials over KR-submodule of R^n co-dimension input elements (row vectors) matrix with rows f_1, \ldots, f_m

The goal is to compute syzygies, that is vectors $oldsymbol{p}=(p_1,\ldots,p_m)\in R^{1 imes m}$

$$p_1 \boldsymbol{f}_1 + \dots + p_m \boldsymbol{f}_m = \boldsymbol{0} \pmod{\mathcal{M}}$$

field

K $R = K[X_1, X_2, \dots, X_r]$ $\mathcal{M} \subset R^n$ $D = \dim_K(R^n / \mathcal{M})$ $f_1, \dots, f_m \in R^n / \mathcal{M}$ $F = (f_1, \dots, f_m) \in R^{m \times n}$

ring of r-variate polynomials over KR-submodule of R^n co-dimension input elements (row vectors) matrix with rows f_1, \ldots, f_m

The goal is to compute syzygies, that is vectors $oldsymbol{p}=(p_1,\ldots,p_m)\in R^{1 imes m}$

$$p_1 \boldsymbol{f}_1 + \dots + p_m \boldsymbol{f}_m = \boldsymbol{0} \pmod{\mathcal{M}}$$

In particular, we aim at computing a Gröbner basis (for some order) of the first syzygy module

$$\operatorname{Syz}_{\mathcal{M}}(\boldsymbol{F}) = \{ \boldsymbol{p} \in R^{1 \times m} \, | \, \boldsymbol{p} \boldsymbol{F} \in \mathcal{M} \}$$

R = K[X] the ring of *univariate* polynomials over a field K

R=K[X] the ring of *univariate* polynomials over a field K Given $f\in R/\langle X^d\rangle$, find $p_1,p_2\in R$ such that

$$f = \frac{p_2}{p_1} \mod X^d$$

R=K[X] the ring of *univariate* polynomials over a field K Given $f\in R/\langle X^d\rangle$, find $p_1,p_2\in R$ such that

$$f = \frac{p_2}{p_1} \mod X^d \qquad (\Longleftrightarrow \begin{bmatrix} p_1 & p_2 \end{bmatrix} \begin{bmatrix} f \\ -1 \end{bmatrix} = 0)$$

R=K[X] the ring of *univariate* polynomials over a field K Given $f\in R/\langle X^d\rangle$, find $p_1,p_2\in R$ such that

$$f = \frac{p_2}{p_1} \mod X^d \qquad (\Longleftrightarrow \begin{bmatrix} p_1 & p_2 \end{bmatrix} \begin{bmatrix} f \\ -1 \end{bmatrix} = 0)$$

More generally, given $f_1,\ldots,f_m\in R/\langle X^d
angle$, find $oldsymbol{p}\in R^m$ s.t.

$$\boldsymbol{p} \, \boldsymbol{F} = \begin{bmatrix} p_1 & \dots & p_m \end{bmatrix} \begin{bmatrix} f_1 \\ \vdots \\ f_m \end{bmatrix} = 0 \mod X^d$$

R = K[X] the ring of *univariate* polynomials over a field KGiven $f \in R/\langle X^d \rangle$, find $p_1, p_2 \in R$ such that

$$f = \frac{p_2}{p_1} \mod X^d \qquad (\Longleftrightarrow \begin{bmatrix} p_1 & p_2 \end{bmatrix} \begin{bmatrix} f \\ -1 \end{bmatrix} = 0)$$

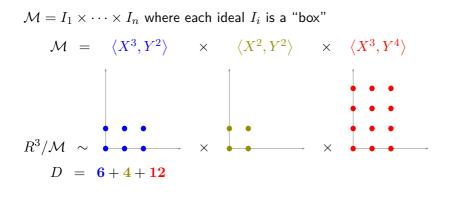
More generally, given $f_1,\ldots,f_m\in R/\langle X^d
angle$, find $oldsymbol{p}\in R^m$ s.t.

$$\boldsymbol{p} \, \boldsymbol{F} = \begin{bmatrix} p_1 & \dots & p_m \end{bmatrix} \begin{bmatrix} f_1 \\ \vdots \\ f_m \end{bmatrix} = 0 \mod X^d$$

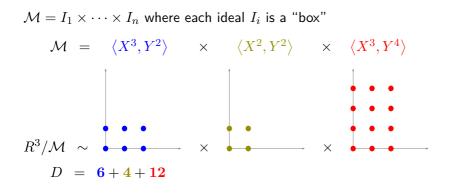
According to our notation: $r = 1, n = 1, \mathcal{M} = \langle X^d \rangle$, D = d.

 $\mathcal{M} = I_1 imes \cdots imes I_n$ where each ideal I_i is a "box"

 $\mathcal{M} = \langle X^3, Y^2 \rangle \times \langle X^2, Y^2 \rangle \times \langle X^3, Y^4 \rangle$



Vinversité Université Université COM



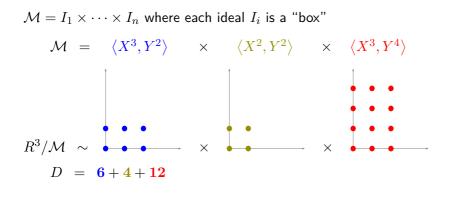
 $p_1[f_{11}, f_{12}, f_{13}] + \dots + p_m[f_{m1}, f_{m2}, f_{m3}] = 0$

3/20 S. Naldi, V. Neiger

Gröbner bases of syzygies and polynomial matrix multiplication

December 6th, 2021

Vinversité Université Université COM

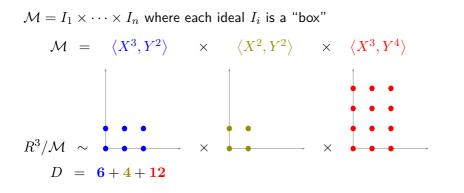


 $\langle X^3, Y^2 \rangle$ $p_1[f_{11}, f_{12}, f_{13}] + \dots + p_m[f_{m1}, f_{m2}, f_{m3}] = 0 \mod$

3/20 S. Naldi, V. Neiger

Gröbner bases of syzygies and polynomial matrix multiplication

Vniversité Université COS



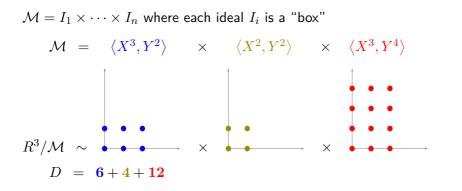
$$p_1[f_{11}, f_{12}, f_{13}] + \dots + p_m[f_{m1}, f_{m2}, f_{m3}] = 0 \mod \begin{pmatrix} X^3, Y^2 \\ X^2, Y^2 \end{pmatrix}$$

3/20 S. Naldi, V. Neiger

Gröbner bases of syzygies and polynomial matrix multiplication

December 6th, 2021

Vinversité Université Université COM



$$p_1[f_{11}, f_{12}, f_{13}] + \dots + p_m[f_{m1}, f_{m2}, f_{m3}] = 0 \mod \begin{pmatrix} X^3, Y^2 \\ X^2, Y^2 \\ X^3, Y^4 \end{pmatrix}$$

3/20 S. Naldi, V. Neiger

Gröbner bases of syzygies and polynomial matrix multiplication

Vinversité Université Université COM

$$D$$
 points $\alpha_1, \dots, \alpha_D \in \mathbb{R}^r$
 $f_1, \dots, f_m \in R = K[X_1, \dots, X_r]$

D points $\alpha_1, \dots, \alpha_D \in \mathbb{R}^r$ $f_1, \dots, f_m \in R = K[X_1, \dots, X_r]$

The goal is to find all linear combinations $oldsymbol{p}=(p_1,\ldots,p_m)$ such that

$$p_1(\alpha_i)f_1(\alpha_i) + \dots + p_m(\alpha_i)f_m(\alpha_i) = 0 \quad \forall i = 1, \dots, D$$

that is, that belong to the ideal $I = I(\{\alpha_1, \ldots, \alpha_D\}).$

D points $\alpha_1, \dots, \alpha_D \in \mathbb{R}^r$ $f_1, \dots, f_m \in R = K[X_1, \dots, X_r]$

The goal is to find all linear combinations $oldsymbol{p}=(p_1,\ldots,p_m)$ such that

$$p_1(\alpha_i)f_1(\alpha_i) + \dots + p_m(\alpha_i)f_m(\alpha_i) = 0 \quad \forall i = 1, \dots, D$$

that is, that belong to the ideal $I = I(\{\alpha_1, \ldots, \alpha_D\}).$

Special choice: if m = 1, $f_1 = 1$, the object to be computed is

$$Syz_I(1) = \{ p \in R \mid p(\alpha_i) = 0, \forall i \} = I$$

D points $\alpha_1, \dots, \alpha_D \in \mathbb{R}^r$ $f_1, \dots, f_m \in R = K[X_1, \dots, X_r]$

The goal is to find all linear combinations $oldsymbol{p}=(p_1,\ldots,p_m)$ such that

$$p_1(\alpha_i)f_1(\alpha_i) + \dots + p_m(\alpha_i)f_m(\alpha_i) = 0 \quad \forall i = 1, \dots, D$$

that is, that belong to the ideal $I = I(\{\alpha_1, \ldots, \alpha_D\}).$

Special choice: if m = 1, $f_1 = 1$, the object to be computed is

$$Syz_I(1) = \{ p \in R \, | \, p(\alpha_i) = 0, \, \forall \, i \} = I$$

• For every ideal I, one has $Syz_I(1) = I$ (not only ideals of points)

D points $\alpha_1, \dots, \alpha_D \in \mathbb{R}^r$ $f_1, \dots, f_m \in R = K[X_1, \dots, X_r]$

The goal is to find all linear combinations $oldsymbol{p}=(p_1,\ldots,p_m)$ such that

$$p_1(\alpha_i)f_1(\alpha_i) + \dots + p_m(\alpha_i)f_m(\alpha_i) = 0 \quad \forall i = 1, \dots, D$$

that is, that belong to the ideal $I = I(\{\alpha_1, \ldots, \alpha_D\}).$

Special choice: if m = 1, $f_1 = 1$, the object to be computed is

$$Syz_I(1) = \{ p \in R \mid p(\alpha_i) = 0, \forall i \} = I$$

- For every ideal I, one has $Syz_I(1) = I$ (not only ideals of points)
- An algorithm that computes a GB of $\operatorname{Syz}_I(1)$ computes a GB of I

4/20 S. Naldi, V. Neiger

Gröbner bases of syzygies and polynomial matrix multiplication

D points $\alpha_1, \dots, \alpha_D \in \mathbb{R}^r$ $f_1, \dots, f_m \in R = K[X_1, \dots, X_r]$

The goal is to find all linear combinations $oldsymbol{p}=(p_1,\ldots,p_m)$ such that

$$p_1(\alpha_i)f_1(\alpha_i) + \dots + p_m(\alpha_i)f_m(\alpha_i) = 0 \quad \forall i = 1, \dots, D$$

that is, that belong to the ideal $I = I(\{\alpha_1, \ldots, \alpha_D\}).$

Special choice: if m = 1, $f_1 = 1$, the object to be computed is

$$Syz_I(1) = \{ p \in R \mid p(\alpha_i) = 0, \forall i \} = I$$

- For every ideal I, one has $Syz_I(1) = I$ (not only ideals of points)
- An algorithm that computes a GB of $Syz_I(1)$ computes a GB of I
- One can apply this algorithm to compute a change of ordering

Gröbner bases of syzygies and polynomial matrix multiplication

Input representation

We assume that the input module \mathcal{M} has a "dual iterative representation":

there are
$$K$$
-linear functionals $\varphi_j : \mathbb{R}^n \to K, \ j = 1, \dots, D$ s.t.
 $\mathcal{M} = \ker(\varphi), \ ou \ \varphi = (\varphi_1, \dots, \varphi_D) : \mathbb{R}^n \to K^D$
 $\mathcal{M}_i = \ker(\varphi_1) \cap \dots \cap \ker(\varphi_i)$ is an \mathbb{R} -module for all i

Based on this representation, an iterative algorithm is described in MMM 1993 (generalizing Möller-Buchberger and FGLM)

Our contribution: We interpret this algorithm with polynomial matrix operations ("products of Gröbner bases"): this allows us to design a divide-and-conquer strategy.

Input representation

We assume that the input module \mathcal{M} has a "dual iterative representation":

there are
$$K$$
-linear functionals $\varphi_j : \mathbb{R}^n \to K, \ j = 1, \dots, D$ s.t.
 $\mathcal{M} = \ker(\varphi), \ ou \ \varphi = (\varphi_1, \dots, \varphi_D) : \mathbb{R}^n \to K^D$
 $\mathcal{M}_i = \ker(\varphi_1) \cap \dots \cap \ker(\varphi_i)$ is an \mathbb{R} -module for all i

Based on this representation, an iterative algorithm is described in MMM 1993 (generalizing Möller-Buchberger and FGLM)

Our contribution: We interpret this algorithm with polynomial matrix operations ("products of Gröbner bases"): this allows us to design a divide-and-conquer strategy.

Interpolation : the functionals are the evaluations at α_j , and the condition is satisfied, $I(\{\alpha_1, \ldots, \alpha_D\})$ can be constructed by adding the points iteratively

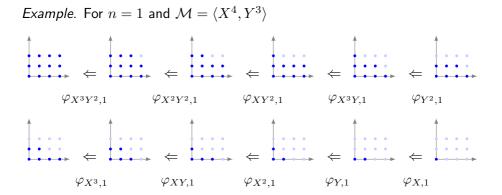
 $\mathcal{M}_i = I(\{\alpha_1, \dots, \alpha_i\})$ is a module, for every order of points

Padé Approximation : the functional φ_j is the coefficient of the j-th monomial in the monomial basis of \mathbb{R}^n/\mathcal{M} (but the order now matters!) :

 $\mathcal{M} = \langle X_1^{d_{11}}, \dots, X_r^{d_{1r}} \rangle \times \dots \times \langle X_1^{d_{n1}}, \dots, X_r^{d_{nr}} \rangle \subseteq R^n$ The functionals are $\varphi_{\mu,i}(\cdot) = \operatorname{coeff}(\cdot, \mu e_i)$, for μe_i in the *escalier* of \mathcal{M}

Padé Approximation : the functional φ_j is the coefficient of the j-th monomial in the monomial basis of \mathbb{R}^n/\mathcal{M} (but the order now matters!) :

 $\mathcal{M} = \langle X_1^{d_{11}}, \dots, X_r^{d_{1r}} \rangle \times \dots \times \langle X_1^{d_{n1}}, \dots, X_r^{d_{nr}} \rangle \subseteq R^n$ The functionals are $\varphi_{\mu,i}(\cdot) = \operatorname{coeff}(\cdot, \mu e_i)$, for μe_i in the escalier of \mathcal{M}



Gröbner bases of syzygies and polynomial matrix multiplication

Monomials of R^n are of the form μe_i where μ is a ring monomial and e_i is the *i*-th element of the canonical basis.

Monomials of R^n are of the form μe_i where μ is a ring monomial and e_i is the *i*-th element of the canonical basis.

Let $\mathcal{N} \subset \mathbb{R}^n$, and let \preccurlyeq be a term order in \mathbb{R}^n . A *Gröbner basis* of \mathcal{N} is a subset $G \subset \mathcal{N}$ such that $\langle \text{Im}_{\preccurlyeq}(G) \rangle = \langle \text{Im}_{\preccurlyeq}(\mathcal{N}) \rangle$

Monomials of R^n are of the form μe_i where μ is a ring monomial and e_i is the *i*-th element of the canonical basis.

Let $\mathcal{N} \subset \mathbb{R}^n$, and let \preccurlyeq be a term order in \mathbb{R}^n . A *Gröbner basis* of \mathcal{N} is a subset $G \subset \mathcal{N}$ such that $\langle \text{lm}_{\preccurlyeq}(G) \rangle = \langle \text{lm}_{\preccurlyeq}(\mathcal{N}) \rangle$

There is a "natural" class of orders on syzygies (R^m) , that can be defined from the order on R^n :

Monomials of R^n are of the form μe_i where μ is a ring monomial and e_i is the *i*-th element of the canonical basis.

Let $\mathcal{N} \subset \mathbb{R}^n$, and let \preccurlyeq be a term order in \mathbb{R}^n . A *Gröbner basis* of \mathcal{N} is a subset $G \subset \mathcal{N}$ such that $\langle lm_{\preccurlyeq}(G) \rangle = \langle lm_{\preccurlyeq}(\mathcal{N}) \rangle$

There is a "natural" class of orders on syzygies (R^m) , that can be defined from the order on R^n :

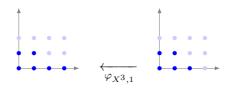
Let \preccurlyeq and $L = (\mu_1, \dots, \mu_m)$ be a term order and a list of monomials of \mathbb{R}^n . We say that \preccurlyeq_L is a *Schreyer order for* \preccurlyeq *and* L if

$$\nu_1 \boldsymbol{\mu}_i \prec \nu_2 \boldsymbol{\mu}_j \implies \nu_1 \boldsymbol{e}_i \prec_L \nu_2 \boldsymbol{e}_j$$

for all ν_1, ν_2 ring monomials, and $i, j = 1, \ldots, m$.

 \preccurlyeq_L is the order that appears in Schreyer's theorem.

One step of the iteration



$$\begin{split} \mathcal{N} &\subset R^n \text{ is a given } R - \text{ module} & \mathcal{N} = \langle X^3, X^2Y, Y^2 \rangle \\ \mathbf{F} &\in R^{m \times n} \text{ with rows in } R^n / \mathcal{N} \\ \varphi &: R^n \to K \text{ linear, such that } \ker(\varphi) \cap \mathcal{N} \text{ is module} & \varphi &= \varphi_{X^3,1} \\ \text{we know a Gröbner basis } \mathbf{P} \text{ of } \operatorname{Syz}_{\mathcal{N}}(\mathbf{F}) & \operatorname{Syz}_{\langle X^3, X^2Y, Y^2 \rangle}(\mathbf{F}) \\ \\ \mathbf{Goal} : \text{ compute a GB of } \operatorname{Syz}_{\ker(\varphi) \cap \mathcal{N}}(\mathbf{F}) & \operatorname{Syz}_{\langle X^4, X^2Y, Y^2 \rangle}(\mathbf{F}) \end{split}$$

Elementary Gröbner bases

Ideal case (n = 1). If $\dim_K(R/I) = 1$ then $I = \langle X_1 - \alpha_1, \dots, X_r - \alpha_r \rangle \text{ for some } \alpha$ $\{X_1 - \alpha_1, \dots, X_r - \alpha_r\} \text{ is a GB of } I.$

Elementary Gröbner bases

Ideal case
$$(n = 1)$$
. If $\dim_K(R/I) = 1$ then
 $I = \langle X_1 - \alpha_1, \dots, X_r - \alpha_r \rangle$ for some α
 $\{X_1 - \alpha_1, \dots, X_r - \alpha_r\}$ is a GB of I .

Module case ($n \ge 1$ *).* For $\pi \le m$ and vectors $\lambda_1, \lambda_2, \alpha$, define:

$$\mathbf{E} = \begin{bmatrix} \mathbf{I}_{\pi-1} & \lambda_1 & \\ & \mathbf{X} - \alpha & \\ & \lambda_2 & \mathbf{I}_{m-\pi} \end{bmatrix} \in R^{(m+r-1) \times m}$$
(1)

Elementary Gröbner bases

Ideal case (n = 1). If
$$\dim_K(R/I) = 1$$
 then
 $I = \langle X_1 - \alpha_1, \dots, X_r - \alpha_r \rangle$ for some α
 $\{X_1 - \alpha_1, \dots, X_r - \alpha_r\}$ is a GB of I .

Module case ($n \geq 1$). For $\pi \leq m$ and vectors $\lambda_1, \lambda_2, \alpha$, define:

$$\mathbf{E} = \begin{bmatrix} \mathbf{I}_{\pi-1} & \lambda_1 & \\ & \mathbf{X} - \alpha & \\ & \lambda_2 & \mathbf{I}_{m-\pi} \end{bmatrix} \in R^{(m+r-1) \times m}$$
(1)

Theorem. (GB of codimension 1 modules) • If $\dim_K(R^m/\mathcal{M}) = 1$, for every \preccurlyeq the \preccurlyeq -reduced GB of \mathcal{M} has the form (1), with with $\lambda_i = 0$ if $e_i \prec e_{\pi}$ for all $i \neq \pi$. • For E as in (1), $\mathcal{M} = \langle \mathbf{E} \rangle$ is such that $\dim_K(R^m/\mathcal{M}) = 1$, and E is a reduced \preccurlyeq -GB for any \preccurlyeq such that $\lambda_i = 0$ if $e_i \prec e_{\pi}$ for all $i \neq \pi$.

One-step algorithm (sketch)

Soit $G = PF = (g_1, \dots, g_k)$, and we know that this is zero modulo \mathcal{N} .

One-step algorithm (sketch)

Soit $G = PF = (g_1, \dots, g_k)$, and we know that this is zero modulo \mathcal{N} . We evaluate $(\varphi(g_1), \dots, \varphi(g_k)) =: (v_1, \dots, v_k)$. If this is zero, one deduces $Syz_{\mathcal{N}}(F) = Syz_{\ker(\varphi) \cap \mathcal{N}}(F)$.

One-step algorithm (sketch)

Soit $G = PF = (g_1, \dots, g_k)$, and we know that this is zero modulo \mathcal{N} . We evaluate $(\varphi(g_1), \dots, \varphi(g_k)) =: (v_1, \dots, v_k)$. If this is zero, one deduces $\operatorname{Syz}_{\mathcal{N}}(F) = \operatorname{Syz}_{\ker(\varphi) \cap \mathcal{N}}(F)$.

Otherwise, we define some well-chosen vectors

$$\leq_{K} \leftarrow \text{SCHREYERORDER}(\leq, K)$$

$$\pi \leftarrow \arg\min_{\leq_{K}} \{e_{i} \mid 1 \leq i \leq k, v_{i} \neq 0\} \quad \triangleright \text{ the index } i \text{ such that}$$

$$v_{i} \neq 0 \text{ which minimizes } e_{i} \text{ with respect to } \leq_{K}$$

$$\{j_{1} < \cdots < j_{\ell}\} \leftarrow \{j \in \{1, \ldots, r\} \mid X_{j} \mu_{\pi} \notin \langle \mu_{i}, i \neq \pi \rangle\}$$

$$\alpha_{j_{s}} \leftarrow \varphi(X_{j_{s}} g_{\pi}) / v_{\pi} \text{ for } 1 \leq s \leq \ell$$

$$\lambda_{i} \leftarrow -v_{i} / v_{\pi} \text{ for } 1 \leq i < \pi \text{ and } \pi < i \leq k$$

in order to construct an elementary matrix ${\bf E}$ satisfying

$$\langle \mathbf{E} \rangle = \operatorname{Syz}_{\ker(\varphi) \cap \mathcal{N}}(\boldsymbol{PF})$$

10/20 S. Naldi, V. Neiger

Finally we output the following matrix ${f Q}$ (a submatrix of ${f E}$)

$$R^{(k+\ell-1)\times\ell} \ni \mathbf{Q} = \begin{bmatrix} \mathbf{I}_{\pi-1} & \lambda_1 & & \\ & X_{j_1} - \alpha_{j_1} & & \\ & \vdots & & \\ & X_{j_\ell} - \alpha_{j_\ell} & & \\ & & \lambda_2 & \mathbf{I}_{m-\pi} \end{bmatrix} \right\} \text{ some rows of EGB}$$
 have been deleted

so that we have this result:

Theorem. If the input matrix **P** is a minimal \preccurlyeq -Gröbner basis, then the submatrix **Q** is such that **QP** is a minimal \preccurlyeq -Gröbner basis of $\operatorname{Syz}_{\ker(\varphi)\cap\mathcal{M}}(F)$.

Sequential algorithm

The base case described above can be iterated as follows:

Input: functionals $\varphi_1, \ldots, \varphi_D$, matrix $F \in \mathbb{R}^{m \times n}$, order \preccurlyeq Output: a minimal \preccurlyeq -GB of $\operatorname{Syz}_{\mathcal{M}}(F)$ where $\mathcal{M} = \cap_i \ker(\varphi_i)$

$$P \leftarrow I_m \in \mathcal{R}^{m \times m}; G \leftarrow F; L \leftarrow (e_1, \dots, e_m) = \lim_{\leq} (P)$$

for $i = 1, \dots, D$ do
 $(Q, L) \leftarrow \text{SYZYGY}_BASECASE(\varphi_i, G, \leq, L)$
 $P \leftarrow QP; G \leftarrow QG$
return P

The sequential algorithm produces D matrices $\mathbf{Q}_1, \mathbf{Q}_2, \dots, \mathbf{Q}_D$ such that $\mathbf{Q}_D \mathbf{Q}_{D-1} \cdots \mathbf{Q}_1$ is a Gröbner basis of

$$\langle \mathbf{Q}_D \mathbf{Q}_{D-1} \cdots \mathbf{Q}_1 \rangle = \operatorname{Syz}_{\mathcal{M}}(\boldsymbol{F})$$

which suggests a divide-and-conquer strategy, based on the re-organization of products :

 $\begin{array}{l} \text{if } D = 1 \text{ then return } \text{Syzygy}_\text{BASECASE}(\varphi_i, G, \leqslant, K) \\ (Q_1, L_1) \leftarrow \text{Syzygy}_\text{DAC}(\varphi_1, \ldots, \varphi_{\lfloor D/2 \rfloor}, G, \leqslant, K) \\ (Q_2, L_2) \leftarrow \text{Syzygy}_\text{DAC}(\varphi_{\lfloor D/2 \rfloor+1}, \ldots, \varphi_D, Q_1G, \leqslant, L_1) \\ \text{return } (Q_2Q_1, L_2) \end{array}$

Bivariate Padé

For R = K[X, Y], let

$$\mathcal{M} = \langle X^d, Y^e \rangle \times \cdots \times \langle X^d, Y^e \rangle \subset \mathbb{R}^n,$$

let $F \in R^{m \times n}$ with $\deg_X(F) < d$ and $\deg_Y(F) < e$, and let \preccurlyeq be a monomial order on R^m .

Bivariate Padé

For R = K[X, Y], let

$$\mathcal{M} = \langle X^d, Y^e \rangle \times \cdots \times \langle X^d, Y^e \rangle \subset \mathbb{R}^n,$$

let $F \in R^{m \times n}$ with $\deg_X(F) < d$ and $\deg_Y(F) < e$, and let \preccurlyeq be a monomial order on R^m .

Theorem. The algorithm computes a minimal \preccurlyeq -GB of $Syz_{\mathcal{M}}(F)$ using

 $O^{\tilde{}}((M^{\omega-1} + Mn)(M+n)de)$

operations in K, where $M = m \min(d, e)$.

Bivariate Padé

For R = K[X, Y], let

$$\mathcal{M} = \langle X^d, Y^e \rangle \times \cdots \times \langle X^d, Y^e \rangle \subset \mathbb{R}^n,$$

let $F \in R^{m \times n}$ with $\deg_X(F) < d$ and $\deg_Y(F) < e$, and let \preccurlyeq be a monomial order on R^m .

Theorem. The algorithm computes a minimal \preccurlyeq -GB of $\operatorname{Syz}_{\mathcal{M}}(F)$ using

$$O^{\sim}((M^{\omega-1} + Mn)(M+n)de)$$

operations in K, where $M = m \min(d, e)$.

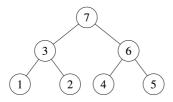
For m = 2, n = 1, d = e (classical Padé) this complexity is of the order $O^{\tilde{}}(d^{\omega+2}) = O^{\tilde{}}(D^{\frac{\omega+2}{2}})$, and the approach by linear algebra (Vincent's talk) gives $O^{\tilde{}}(D^{\omega})$.

One example I

We want to compute syzygies of

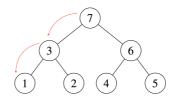
$$\boldsymbol{F} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \in K[X,Y]^{2 \times 1}$$

modulo the ideal $I = \langle X^2, Y^2 \rangle$. I assume K[X,Y] with the lexicographic order $\preccurlyeq_{\text{lex}}$ with $Y \preccurlyeq_{\text{lex}} X$ and let \preccurlyeq be the term over position order $\preccurlyeq_{\text{lex}}^{\text{top}}$. The algorithm organises the steps in a tree of the form



One example II

On the top (step 7), we call Padé(2, 2, F, ≤, L). The recursive call will reduce the computation to Padé(2, 1, F, ≤, L) (step 3), then Padé(1, 1, F, ≤, L) (step 1).



• Padé $(1, 1, F, \preccurlyeq, L)$ on step 1: The output is computed with the "base case algorithm" with functional $\varphi(f) = coeff(f, 1)$:

$$\mathbf{Q}_1 = \begin{bmatrix} X & 0\\ Y & 0\\ 1 & 1 \end{bmatrix}$$

and its leading terms $L_1 = ((X, 0), (Y, 0), (0, 1)).$

16/20 S. Naldi, V. Neiger

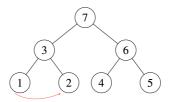
Gröbner bases of syzygies and polynomial matrix multiplication

One example III

• Back to Node 3, we compute the "residual"

$$\boldsymbol{G}_2 = X^{-1}(\boldsymbol{Q}_1 \boldsymbol{F} \mod X^2, Y) = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}.$$

Next we call $\mathsf{Pade}(1, 1, G_2, \preccurlyeq, L_1)$, base case (*Node 2*).



One example IV

This step computes the matrix

$$\mathbf{Q}_2 = \begin{bmatrix} X & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

and the new leading monomials $L_2 = ((X^2, 0), (Y, 0), (0, 1))$. Note that Q_2 is a subset of the elementary Gröbner basis

$$E_2 = \begin{bmatrix} X & 0 & 0 \\ Y & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

where one row has been deleted, since it is redundant.

• Now the first recursive call of the top call is completed. We compute the residual

$$\widehat{\boldsymbol{G}}_2 = Y^{-1}(\mathbf{Q}\boldsymbol{F} \mod X^2, Y^2) = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

and go to (*Node 6*).

18/20 S. Naldi, V. Neiger

Gröbner bases of syzygies and polynomial matrix multiplication

One example V

 Node 6 has in input (2, 1, G₂, ≼, L₂), and we do the same on the right part of the tree, whose output is the matrix

$$\widehat{\mathbf{Q}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & Y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Finally we get the output of the main call (Node 7), that is

$$\widehat{\mathbf{Q}}\mathbf{Q}_{2}\mathbf{Q}_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & Y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X^{2} & 0 \\ Y & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} X^{2} & 0 \\ Y^{2} & 0 \\ 1 & 1 \end{bmatrix}$$

whose leading monomials are \widehat{L}_2 and which is the sought \preccurlyeq -Gröbner basis of syzygies for F modulo $\langle X^2, Y^2 \rangle$.

19/20 S. Naldi, V. Neiger

References

This talk is based on

A divide-and-conquer algorithm for computing Gröbner bases of syzygies in finite dimension" (S. Naldi, V. Neiger) ACM ISSAC 2020, pp. 380-387

Related papers:

 "A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants"

(B. Beckermann, G. Labahn) SIAM J. Matrix Anal. Appl. 15, 3 (1994), 804-823

Gröbner bases of ideals defined by functionals with an application to ideals of projective points"

(M. G. Marinari, H. M. Moller, T. Mora) Appl. Algebra Engrg. Comm. Comput. 4, 2 (1993), 103–145