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General context and notation Xtim W o @

K field
R=K[X1,Xs,...,X,] ring of r-variate polynomials over K
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K field
R=K[X1,Xs,...,X,] ring of r-variate polynomials over K
M C R" R-submodule of R™

co-dimension

D= dimK(Rn/M)
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K field
R=K[X1,Xs,...,X,] ring of r-variate polynomials over K
MCR"? R-submodule of R™
D = dimg (R" /M) co-dimension
fi.-- s fmeRY/M input elements (row vectors)
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General context and notation Xlim ¥ Cr

K field
R=K[X1,Xs,...,X,] ring of r-variate polynomials over K
M CR" R-submodule of R™
D = dimg (R" /M) co-dimension
fi.-- s fmeRY/M input elements (row vectors)
F=(f....f, € R™" matrix with rows f,..., f,
The goal is to compute syzygies, that is vectors p = (p1,...,pm) € RPX™

pfi+- A+ pmfn =0
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K field
R=K[X1,Xs,...,X,] ring of r-variate polynomials over K
M CR" R-submodule of R™
D = dimg (R" /M) co-dimension
fi.-- s fmeRY/M input elements (row vectors)
F=(f....f, € R™" matrix with rows f,..., f,
The goal is to compute syzygies, that is vectors p = (p1,...,pm) € RPX™

pifi+- - +pomf, =0 (mod M)
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General context and notation Xlim ¥ Cr

K field
R=K[X1,Xs,...,X,] ring of r-variate polynomials over K
M CR" R-submodule of R™
D = dimg (R" /M) co-dimension
fi.-- s fmeRY/M input elements (row vectors)
F=(f....f, € R™" matrix with rows f,..., f,
The goal is to compute syzygies, that is vectors p = (p1,...,pm) € RPX™

pifi+- - +pomf, =0 (mod M)

In particular, we aim at computing a Grobner basis (for some order) of the

first syzygy module
Syzm(F) = {p € R™™|pF € M}
December 6th, 2021
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Hermite-Padé approximation Xlim e o @

R = K[X] the ring of univariate polynomials over a field K
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Hermite-Padé approximation

R = K[X] the ring of univariate polynomials over a field K

Given f € R/(X%), find p1,p2 € R such that

f:]12 mod X
b1
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Hermite-Padé approximation

R = K[X] the ring of univariate polynomials over a field K

Given f € R/(X%), find p1,p2 € R such that

f:% mod X4 (<=>{p1 p2} [_‘f]=0)
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Hermite-Padé approximation Xlim ¥ ®

R = K[X] the ring of univariate polynomials over a field K

Given f € R/(X%), find p1,p2 € R such that

f= % mod X (<= [P1 p2} [—fI] =0)

More generally, given f1,..., fm € R/(X%), find p € R™ s.t.

fi
PF:[Pl pm] | =0 mod X9

fm
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Hermite-Padé approximation Xlim ¥ ®

R = K[X] the ring of univariate polynomials over a field K

Given f € R/(X%), find p1,p2 € R such that

f:%f mod X! (<= [p1 p)] [_fl]:)

More generally, given f1,..., fm € R/(X%), find p € R™ s.t.

fi
PF:[Pl pm] | =0 mod X9
fm

According to our notation: r=1,n=1, M = <Xd>, D =d.
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M =1; x--- x I, where each ideal I; is a “box"

M = (X3Y?) x (X2 YV?) x (X3Yh
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M =1; x--- x I, where each ideal I; is a “box"

M = (X3Y?) x (X2V?) X

R3 /M ~ X X
D = 6+4+12
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M =1; x--- x I, where each ideal I; is a “box"

M = (X3Y?) x (X2 YV?) x (X3Yh

X

R¥ /M ~ x
D = 6+4+12

p1lfins fios fisl + -0+ Pmlfmts frozs frns] =0
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M =1; x--- x I, where each ideal I; is a “box"

M = (X3Y?) x (X2V?) X

R¥ /M ~ x
D = 6+4+12

(x°,7?)
pilfin, fros fis] + -+ pmlfmis fon2s fms] =0 mod
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M =1; x--- x I, where each ideal I; is a “box"

M = (X3Y?) x (X2V?) X

R¥ /M ~ x
D = 6+4+12

<X§,Y2
pilfits fio fis)+ oo+ pmlfima, Sz, frns) =0 mod  (X7V7
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M =1; x--- x I, where each ideal I; is a “box"

M = (X3Y?) x (X2V?) X

R¥ /M ~ x
D = 6+4+12

p1lfins fios fisl + -0+ Pmlfmts frozs frns] =0
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Interpolation Xlim W % @

D points aq,...,ap € R"
fh“‘anER:K[Xl,...,XT]
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Interpolation Xlim % ®

D points aq,...,ap € R"
fiseoos fm € R=K[Xq,..., X;]

The goal is to find all linear combinations p = (p1,...,pm) such that
pi(ei) fi(ai) + -+ pm(ai) fm(ai) =0 Vi=1,...,D

that is, that belong to the ideal I = I({ay,...,ap}).
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Interpolation Xlim % ®

D points aq,...,ap € R"
fiseoos fm € R=K[Xq,..., X;]

The goal is to find all linear combinations p = (p1,...,pm) such that
pi(ai) fi(as) + -+ pm(i) fm(ai) =0 Yi=1,...,D

that is, that belong to the ideal I = I({ay,...,ap}).

Special choice: if m =1, f; = 1, the object to be computed is

Syz;(1)={p e R|p(e;) =0,Vi} =1
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Interpolation Xlim % ®

D points aq,...,ap € R"
fiseoos fm € R=K[Xq,..., X;]

The goal is to find all linear combinations p = (p1,...,pm) such that
pi(eq) fi(es) + -+ pm(i) fm(ai) =0 Vi=1,....,D

that is, that belong to the ideal I = I({ay,...,ap}).

Special choice: if m =1, f; = 1, the object to be computed is

Syz;(1)={p e R|p(e;) =0,Vi} =1

® For every ideal I, one has Syz;(1) = I (not only ideals of points)
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Interpolation Xlim % ®

D points aq,...,ap € R"
fiseoos fm € R=K[Xq,..., X;]

The goal is to find all linear combinations p = (p1,...,pm) such that
pi(eq) fi(es) + -+ pm(i) fm(ai) =0 Vi=1,....,D

that is, that belong to the ideal I = I({ay,...,ap}).

Special choice: if m =1, f; = 1, the object to be computed is

Syz;(1)={p e R|p(e;) =0,Vi} =1

® For every ideal I, one has Syz;(1) = I (not only ideals of points)

® An algorithm that computes a GB of Syz;(1) computes a GB of T
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Interpolation Xlim % ®

D points aq,...,ap € R"
fiseoos fm € R=K[Xq,..., X;]

The goal is to find all linear combinations p = (p1,...,pm) such that
pi(eq) fi(es) + -+ pm(i) fm(ai) =0 Vi=1,....,D

that is, that belong to the ideal I = I({ay,...,ap}).

Special choice: if m =1, f; = 1, the object to be computed is

Syz;(1)={p e R|p(e;) =0,Vi} =1

® For every ideal I, one has Syz;(1) = I (not only ideals of points)
® An algorithm that computes a GB of Syz;(1) computes a GB of T

® One can apply this algorithm to compute a change of ordering
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Input representation Xlim % @

We assume that the input module M has a “dual iterative representation”:

there are K —linear functionals ¢; : R" = K, j=1,...,D st.
M = ker(p), ol ¢ = (p1,...,¢p) : R* — KP
M; =ker(e1) N---Nker(yp;) is an R-module for all

Based on this representation, an iterative algorithm is described in MMM
1993 (generalizing Moller-Buchberger and FGLM)

Our contribution: We interpret this algorithm with polynomial matrix
operations (“products of Grobner bases”): this allows us to design a
divide-and-conquer strategy.
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Input representation Xlim % @

We assume that the input module M has a “dual iterative representation”:
there are K —linear functionals ¢; : R" = K, j=1,...,D st.

M = ker(p), ol ¢ = (p1,...,¢p) : R* — KP
M; =ker(e1) N---Nker(yp;) is an R-module for all

Based on this representation, an iterative algorithm is described in MMM
1993 (generalizing Moller-Buchberger and FGLM)

Our contribution: We interpret this algorithm with polynomial matrix
operations (“products of Grobner bases”): this allows us to design a
divide-and-conquer strategy.

Interpolation : the functionals are the evaluations at «;, and the condition is
satisfied, I({a1,...,ap}) can be constructed by adding the points iteratively

M; =I({ai,...,a;}) is a module, for every order of points
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Padé Approximation : the functional ¢; is the coefficient of the j—th monomial
in the monomial basis of R™/M (but the order now matters!) :

M= (X XEry o (X X ) C R
The functionals are ¢,, ;(-) = coeff(-, ue;), for pe; in the escalier of M
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Padé Approximation : the functional ¢; is the coefficient of the j—th monomial
in the monomial basis of R™/M (but the order now matters!) :

M= (X XEry o (X X ) C R
The functionals are ¢,, ;(-) = coeff(-, ue;), for pe; in the escalier of M

Example. For n =1 and M = (X4 Y3)

IIII <ZIII. <:|Z.. <:l <:L<:LLL»

Px3y21 Px2y21 Pxvyz1 PX3Y,1 Py21

I I I I I I
1 <=f°*<:tﬁk$<:tk7*<:pf+<:i‘k77$

Px31 PXY,1 Px21 Py,1 Yx,1
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Grobner bases and syzygies Xtim B o @

Monomials of R™ are of the form pe; where p is a ring monomial and e; is
the i-th element of the canonical basis.
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Grobner bases and syzygies

Monomials of R™ are of the form pe; where p is a ring monomial and e; is
the i-th element of the canonical basis.

Let N C R™, and let < be a term order in R™. A Grébner basis of N is a
subset G C N such that (Im4(G)) = (Img(N))
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Grobner bases and syzygies Xtim B o @

Monomials of R™ are of the form pe; where p is a ring monomial and e; is
the i-th element of the canonical basis.

Let N C R™, and let < be a term order in R™. A Grébner basis of N is a
subset G C N such that (Im4(G)) = (Img(N))

There is a "natural” class of orders on syzygies (R™), that can be defined
from the order on R"™:
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Grobner bases and syzygies Xlim ¥ ®

Monomials of R™ are of the form pe; where p is a ring monomial and e; is
the i-th element of the canonical basis.

Let N C R™, and let < be a term order in R™. A Grébner basis of N is a
subset G C N such that (Im4(G)) = (Img(N))

There is a "natural” class of orders on syzygies (R™), that can be defined
from the order on R"™:

Let < and L = (p4, ..., 1, ) be a term order and a list of monomials of R™.
We say that <y, is a Schreyer order for < and L if

Vi = Vop; = V1€; <[ 2€;
for all vq, v9 ring monomials, and 7,5 =1,...,m.

<, is the order that appears in Schreyer’s theorem.
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One step of the iteration Xtim B o @

| |
SESUNN SN

Px3,1
N C R" is a given R — module N = (X3 X?2YY?)
F € R™ ™ with rows in R"/N
¢ : R"® — K linear, such that ker(p) N A is module ©=pxs
we know a Grébner basis P of Syz,,(F') Syz,xs x2v,y2) (F)
Goal : compute a GB of Syzye, () (F) Syz (x4, x2v,y2) (F)
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Elementary Grobner bases Xtim B o @

Ideal case (n =1). If dimg(R/I) =1 then
I=(X1—ay,...,X, —a,) for some «

{Xi—ai,..., X, —a,} is a GB of I.
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Elementary Grobner bases Xlim ¥

Ideal case (n =1). If dimg(R/I) =1 then
I=(X1—ay,...,X, —a,) for some «
{Xi—ai,..., X, —a,} is a GB of I.

Module case (n > 1). For m < m and vectors A1, Ag, «, define:

I7r—1 )\l
m+r—1)xm
E = X — o e Rim+r=1) (1)
)\2 Im—Tr
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Elementary Grobner bases Xlim W o)

Ideal case (n =1). If dimg(R/I) =1 then
I=(X1—ay,...,X, —a,) for some «
{Xi—ai,..., X, —a,} is a GB of I.

Module case (n > 1). For m < m and vectors A1, Ag, «, define:

Theorem. (GB of codimension 1 modules)

» If dimg (R™/M) =1, for every < the < —reduced GB of M has the form (1),
with with A\; = 0 if e; < e, for all i # 7.

<« For E asin (1), M = (E) is such that dimg(R™/M) =1, and E is a reduced
<-GB for any < such that \; =0 if e; < e, for all i # 7.
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One-step algorithm (sketch) Xtim B o @

Soit G = PF = (g4,...,9;), and we know that this is zero modulo N.
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One-step algorithm (sketch) Xlim e o @

Soit G = PF = (g4,...,9;), and we know that this is zero modulo N.

We evaluate (p(g;),...,9(g;)) =: (v1,...,vx). If this is zero, one deduces
SyZN(F) = Skaer(@)ﬂN(F)'

10/20  S. Naldi, V. Neiger Grobner bases of syzygies and polynomial matrix multiplication December 6th, 2021



One-step algorithm (sketch) Xtim B o @

Soit G = PF = (g4,...,9;), and we know that this is zero modulo N.

We evaluate (p(g;),...,9(g;)) =: (v1,...,vx). If this is zero, one deduces
SyZN(F) = Skaer(@)ﬁN(F)'
Otherwise, we define some well-chosen vectors

<g < SCHREYERORDER(X, K)

m < argming, {e; [ 1 <i<k,v; #0} > the index i such that

v; # 0 which minimizes e; with respect to <k

{1 < <jeb = L € {Leur} | Xty & v # 1)}

aj, — @(Xj.g,) vy for1 <s < ¢

Ai — —viJupforl1 <i<rmandr <i<k

in order to construct an elementary matrix E satisfying

<E> - Syzker(go)ﬂ/\/'(PF)
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One-step algorithm (sketch, cont’d) Xtim B o @

Finally we output the following matrix Q (a submatrix of E)

| ] A
Xj — oy,
RkH=1)xt 5 Q= : } some rows of EGB
: have been deleted
Xj, — oy,
A9 | I

so that we have this result:

Theorem. If the input matrix P is a minimal <-Grobner basis, then the
submatrix Q is such that QP is a minimal <-Grébner basis of

Syzker(np)ﬁ/\/l (F) :
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Sequential algorithm Xlim ¥ @

!

\
= e &=

The base case described above can be iterated as follows:

Input: functionals ©1,...,¢p, matrix F' € R™*", order <

Output: a minimal <-GB of Syz,,(F') where M = N; ker(¢;)

P—1I,cR™™MG—F,L(e1,...,em)=1mg(P)
fori=1,...,Ddo

(Q, L) « Syzvcy_BaseCask(¢;, G, <, L)

P — QP;G « QG
return P
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Divide-and-conquer algorithm Xtim W o @

The sequential algorithm produces D matrices Q1,Qa, ..., Qp such that
QpQp_1---Qq is a Grébner basis of

(QpQp-1---Q1) = Syz(F)

which suggests a divide-and-conquer strategy, based on the re-organization
of products :

if D = 1 then return Syzvcy_BaseCasi(p;, G, <, K)
(Q4, L) « Syzvcy_DAC(¢1, . - ®|DJ2]> G,<,K)

(Qy, Lz) « Svzyey_DAC(¢|p/2)+1> - - -» D> Q1G, <, L1)
return (0,0, L2)
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Bivariate Padé
For R = K[X,Y], let
M= (XY % x (XY c R",

let FF € R™*™ with degx(F) < d and degy (F) < e, and let < be a
monomial order on R™.
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Bivariate Padé
For R = K[X,Y], let
M= (XY % x (XY c R",

let FF € R™*™ with degx(F) < d and degy (F) < e, and let < be a
monomial order on R™.

Theorem. The algorithm computes a minimal <-GB of Syz,,(F') using
O~ (MY~ + Mn)(M 4+ n)de)

operations in K, where M = mmin(d, e).
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Bivariate Padé Xlim W o)

For R = K[X,Y], let
M= (XY % x (XY c R",

let FF € R™*™ with degx(F) < d and degy (F) < e, and let < be a
monomial order on R™.

Theorem. The algorithm computes a minimal <-GB of Syz,,(F') using
O~ (MY~ + Mn)(M 4+ n)de)

operations in K, where M = mmin(d, e).

For m = 2,n = 1,d = e (classical Padé) this complexity is of the order
+2

O (d“*?) = O (D7), and the approach by linear algebra (Vincent's talk) gives
O (D¥).
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One example | Xlim W ®

We want to compute syzygies of

F = [_111 € K[X,Y)**!

modulo the ideal I = (X2, Y?).
| assume K[X,Y] with the lexicographic order <jox with Y <jex X and let

< be the term over position order <f§f.

The algorithm organises the steps in a tree of the form
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One example Il

L). The recursive call will reduce

® On the top (step 7), we call Padé(2,2, F, <,
, L) (step

the computation to Padé(2,1, F', <, L) (step 3), then Padé(1,1, F, <
1).

® Padé(1,1, F, =<, L) on step I. The output is computed with the “base case
algorithm” with functional ¢(f) = coef f(f,1):

0
Q=Y 0
1

and its leading terms L; = ((X,0), (Y,0),(0,1)).
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® Back to Node 3, we compute the “residual”
1
Gy = X YQ;F mod X2,Y) = |0
0

Next we call Padé(1,1, G, %, L1), base case (Node 2).
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One example IV

This step computes the matrix

»
o = O

0
Q=10 0
0 1

and the new leading monomials Ly = ((X?2,0), (Y,0),(0,1)). Note that Qs is a
subset of the elementary Groébner basis

Ey =

oo~
O = OO
R o o O

where one row has been deleted, since it is redundant.

® Now the first recursive call of the top call is completed. We compute the residual
R 0
G> =Y Y(QF mod X?,Y?) = |1
0

and go to (Node 6).
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One example V

® Node 6 has in input (2,1, 6:2, <, Ls), and we do the same on the right part of

the tree, whose output is the matrix

~

Q=

_ O O

0
Y
0

OO =

® Finally we get the output of the main call (Node 7), that is
X2 0 X2 0

N 1 0 0
QQ:Q: =10 Y 0 Y 0|=1|Y?2 0
0 0 1 1 1 1

—_

whose leading monomials are L and which is the sought <-Grobner basis of

syzygies for F modulo (X?,Y?).
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