Coherence by decreasingness for monoids

Séminaire de réécriture

24 Novembre 2022

I. Motivation

- II. Coherence by decreasingness for ARS
- III. Coherence by decreasingness for SRS
- IV. Coherence by decreasingness for $\mathcal{K}\text{-}\mathsf{SRS}$
- V. Perspectives

I. Motivation

Computing homotopy bases for finitely presented monoids

Let *M* be a monoid

- generated by a finite set X of generators,
- Submitted to a finite set R ⊆ X* × X* of oriented relations, called rewriting rules.

Question: What is an homotopy basis?

A syzygy: a relation between relations

An homotopy basis: a family of syzygies that generates all syzygies of (X, R).

Convergent presentations of monoids

Let M be a monoid finitely presented.

Question: How to compute an homotopy basis?

Convergent presentation (X, R) of M:

Terminating: all computations end.

In general define: left degree-wise lexicographic order. Fix an order ≺ on elements of X.

> $u >_{\mathsf{lex}} v \text{ iff } \ell(u) > \ell(v) \text{ or } \ell(u) = \ell(v)$ and $u = x_1 x_2 \dots x_{k-1} x_k x_{k+1} \dots x_n$, $v = x_1 x_2 \dots x_{k-1} y_k y_{k+1} \dots y_n \text{ with } y_k \prec x_k$.

Confluent: the computation converges to the same result (if it exists).

Squier's completion theorem, '94

Let $M = \langle X, R \rangle$ be a monoid presented by a finite convergent presentation.

A critical branching: an overlapping of two rewriting rules that is minimal with respect to the rewriting context.

There are two shapes of critical branchings:

The family of syzygies formed by generating confluences

indexed by critical branchings, form an homotopy basis.

Let $M = \langle X, R \rangle$ be a monoid finitely presented such that

- each word *M* is represented by a recurrent form, i.e. a normal form modulo cycles.
- each critical pair is decreasing, which generalizes the confluence property by adding a well-founded labelling on rewriting steps, [van Oostrom, '94].

Question: How to compute an homotopy basis of (X, R)?

Example 1: Braid monoid B_3^+

Presentation of B_3^+

 $\langle s, t \mid \alpha : sts \Rightarrow tst \rangle.$

$$s = \varkappa \mid t = \lvert \varkappa$$

- Termination: degree lexicographic order on s > t.
- One non confluent critical branching:

Knuth-Bendix completion: it gives, by adding

a convergent presentation of B_3^+ on the two generators s and t, which is infinite

Theorem. B_3^+ does not admit a finite convergent presentation with the two generators s and t, Kapur & Narendran, '85.

Example 1: Braid monoid B_3^+

Presentation of B_3^+ by adjunction of a new generator *a*

$$\langle s, t, a \mid \alpha : ta \Rightarrow as, \beta : st \Rightarrow a \rangle$$

standing for the product *st*.

- Termination: degree lexicographic order on s > t > a.
- Knuth-Bendix completion:

The SRS $\langle s, t, a \mid ta \stackrel{\alpha}{\Rightarrow} as$, $st \stackrel{\beta}{\Rightarrow} a$, $sas \stackrel{\gamma}{\Rightarrow} aa$, $saa \stackrel{\delta}{\Rightarrow} aat > is a$ convergent presentation of B_3^+ .

By Squier's completion of

$$\langle s, t, a \mid \alpha : ta \Rightarrow as, \beta : st \Rightarrow a, \stackrel{\gamma}{\Rightarrow} aa , saa \stackrel{\delta}{\Rightarrow} aat \rangle,$$

we obtain an homotopy basis formed by these generating confluences

Another method to compute an homotopy basis for B_3^+

We consider a presentation of B_3^+ , [Alleaume-Malbos, '17]:

$$\Sigma(\mathsf{B}_3^+) = \langle s, t \mid \alpha : sts \Rightarrow tst, \ \beta : tst \Rightarrow sts \rangle.$$

by working on the orientation of the rewriting rules instead of adding new generators.

Question:

Can we compute an homotopy basis of $\Sigma(B_3^+)$?

Example 2: Plactic monoid P_n

Plactic monoid Pn

• generated by 1 < 2 < ... < n

and submitted to Knuths relations

 $x \le y < z$, $yzx \Rightarrow yxz$

 $x < y \le z$, $zxy \Rightarrow xzy$

with $x, y, z \in \{1, 2, 3, ..., n\}$.

- ▶ Termination: degree lexicographic order on 1 < 2 < ... < n.
- Some non confluent critical branchings:

Knuth-Bendix completion: it gives, by adding

a convergent presentation of P_n on the generators $1, \ldots, n$, which is infinite.

Theorem. $\forall n > 3$, P_n does not admit a finite convergent presentation by Knuth-Bendix completion of the Knuth presentation with the degree lexicographic order, Kubat and Okninski, '14.

Example 2: plactic monoids P_n

► Young tableau over {1,...,n}:

Col(n): set of columns.

- ► Schensted algorithm: any word w in {1,..., n}* ~ Young tableau P(w).
- ▶ Notation: any two columns $u^{\times}v$ iff $T = c_u c_v$ is not a Young tableau.
- Oriented relations on Col(n)*:

 $\mathsf{Col}_2(n) = \left\{ \begin{array}{l} c_u c_v \Rightarrow c_w c_{w'} \mid u^{\times} v \in \mathit{Col}(n) \text{ and } P(uv) = c_w c_{w'} \end{array} \right\}$

Example 2: Plactic monoid P_n

The column presentation $Col_2(n)$ is a convergent presentation of P_n .

By Squier's completion of

 $\operatorname{Col}_2(n) = \{ c_u c_v \Rightarrow c_w c_{w'} \mid u^{\times} v \in \operatorname{Col}(n) \text{ and } P(uv) = c_w c_{w'} \},$

we obtain an homotopy basis, denoted $Col_3(n)$, formed by these confluences

indexed by critical branchings, [Hage-Malbos, '16].

Another method to compute an homotopy basis for P_n

We consider a presentation of P_n :

 $\Sigma(\mathsf{P}_n) = \langle 1, \ldots, n \mid yzx \stackrel{\alpha_{x,y,z}}{\Rightarrow} yxz, x \leq y < z; \ xzy \stackrel{\beta_{x,y,z}}{\Rightarrow} zxy, x < y \leq z \rangle.$

by working on the orientation of the rewriting rules instead of adding new generators.

Questions:

Can we compute an homotopy basis of $\Sigma(P_n)$? Is it smaller than the homotopy basis $Col_3(n)$ of the column presentation $Col_2(n)$?

II. Coherence by decreasingness for ARS

One-dimensional polygraphs

A 1-polygraph X: modelization of abstract rewriting system.

- ▶ set of 0-generators X₀,
- ▶ set of 1-generators X₁, called rewriting steps,
- source and target maps

$$X_0 \xleftarrow{S_0}{t_0} X_1.$$

Free categories over a 1-polygraph X:

Free 1-category X_1^* whose morphisms:

 $x_0 \xrightarrow{u_1} x_1 \xrightarrow{u_2} x_2 \xrightarrow{u_3} \ldots \xrightarrow{u_n} x_n$

with $u_i \in X_1$.

• free (1,0)-category X_1^{\top} whose morphisms:

$$x_0 \xleftarrow{u_1} x_1 \xleftarrow{u_2} x_2 \xleftarrow{u_3} \dots \xleftarrow{u_n} x_n$$

with $u_i: x_{i-1} \rightarrow x_i$ or $u_i: x_i \rightarrow x_{i-1}$.

van Oostrom's decreasingness theory: well-founded labelling

A Well-founded labelled 1-polygraph is a data (X, I, \leq_I, ψ) made of:

- ▶ a 1-polygraph X,
- well-founded ordered set (I, \leq_I) of labels,
- well-founded labelling:

$$\psi: X_1 \longmapsto (I, \leq_I)$$

 $u \longmapsto \psi(u).$

Given a 1-cell $f = x_0 \xrightarrow{u_1} x_1 \xrightarrow{u_2} x_2 \xrightarrow{u_3} \dots \xrightarrow{u_n} x_n \in X_1^*$, we denote by $L^{\prime}(f) = \{\psi(u_1), \dots, \psi(u_n)\}$

the set of labels of rewriting steps in f.

Locally decreasingness

- A local branching (f, g): a pair of rewriting steps f and g with $s_0(f) = s_0(g)$.
- A decreasing confluence diagram of (f, g) is defined by

with $f',g',f'',g'',h_1,h_2\in X_1^*$ and such that

- $k < \psi(f)$, for all k in L'(f'),
- g'' is an identity or a 1-generator labelled by $\psi(g') = \psi(g)$,
- $k < \psi(f)$ or $k < \psi(g)$, for all k in $L'(h_1)$.
- symmetrically for g', f" and h₂.

van Oostrom's confluence theorem

Let (X, I, \leq_I, ψ) be a well-founded labelled 1-polygraph.

- ▶ A (finite) multiset over *I*: a function $A : I \to \mathbb{N}$ such that the set $\{i \in I \mid A(i) \neq 0\}$ is finite.
 - We denote M(I) the set of finite multisets over I.
 - ▶ Rq: we generalize \leq_I to a well-founded order \leq_{muI} on M(I).
- lexicographic maximum measure: the multiset of the lexicographically maximal step labels [van Oostrom, '94].

$$\begin{array}{ccccc} |.|: & X_1^* & \longmapsto & M(I) \\ & f & \longmapsto & |f| \end{array}$$

Theorem: Any locally decreasing well-founded polygraph is confluent, [van Oostrom, '94].

Recurrent forms, [Zilli, '84]

Let X be a 1-polygraph.

The X-congruence: equivalence relation on X_0 defined by

 $x \approx^X y \quad \Longleftrightarrow \quad \exists f : x \to y \in X_1^\top.$

We denote

• Equivalence set:
$$\overline{X} = X_0 / \approx^X$$
.

• Canonical projection: $\pi: X_0 \to \overline{X}$.

► A recurrent 0-generator x of a 1-polygraph X: for each 1-cell

 $f: x \to y \in X_1^*,$

there exists a 1-cell

 $g: y \to x \in X_1^*.$

• A section of a 1-polygraph X: a section of π

$$egin{array}{rll} r: & \overline{X} & \longmapsto & X_0 \ & \overline{x} & \longmapsto & r(\overline{x}), \end{array} & \pi(r(\overline{x})) = \overline{x}. \end{array}$$

• We denote
$$r(\overline{x}) = \widetilde{x}$$
.

• a **recurrent section** *r*: for each $x \in X_0$, \tilde{x} is recurrent.

A recurrent 1-polygraph X: admits a recurrent section

• each equivalence class \overline{x} is represented by a recurrent 0-generator \widetilde{x} .

coherent extensions of 1-polygraphs

▶ A sphere in X_1^{\top} : a pair (f, g) of 1-cells such that

 $s_0(f)=s_0(g)$ and $t_0(f)=t_0(g).$

• Denote by $\operatorname{Sph}(X_1^{\top})$ the set of spheres of X_1^{\top} .

A cellular extension of X₁[⊤]: a set X₂ with a map X₂ → Sph(X₁[⊤]).
 Elements of X₂ are called 2-generators

- A (2,0)-polygraph X is defined by
 - ► a 1-polygraph (X_0, X_1) ,
 - a cellular extension X_2 of X_1^{\top}

Let X be a (2,0)-polygraph.

- Free (2,0)-category X_2^{\top} on X.
 - ▶ its 2-cells are generated via ★₀ and ★₁ of 2-generators in X₂, of their inverses and of identities of 1-cells of X₁^T.
- An homotopy basis X₂: a cellular extension of X₂[⊤] such that for any sphere (f, g), there exists a 2-cell

$$A: f \Rightarrow g \in X_2^\top$$

- A coherent (2,0)-polygraph X is defined by
 - ▶ a 1-polygraph (X_0, X_1) ,
 - > an homotopy basis X_2 .

A coherently recurrent (2,0)-polygraph is defined by

▶ a recurrent 1-polygraph
$$(X_0, X_1)$$
,

- a recurrent section $r(\overline{x}) = \widetilde{x}$ of (X_0, X_1) ,
- ▶ a recurrent cellular extension X_2 of X_1^{\top} : for any 1-cell

 $f:\widetilde{x}\to\widetilde{x}\in X_1^*,$

there exists a 2-cell

 $A: f \Rightarrow 1_{\widetilde{X}} \in X_2^{\top}.$

A coherently locally decreasing (2,0)-polygraph:

- ▶ a well-founded labelled 1-polygraph (X_0, X_1) ,
- ▶ a well-founded labellinf ψ of (X_0, X_1) ,
- a decreasing cellular extension X₂ of X₁^T: for any local branching (f, g), there exists a decreasing confluence diagram

and a 2-cell $A_{f,g}$ in X_2^{\top} .

Theorem. Let X be a coherently recurrent (2,0)-polygraph. If X is locally coherently decreasing, then X is coherent.

III. Coherence by decreasingness for SRS

Application: braid monoid B₃⁺

Presentation of B⁺₃

$$\Sigma(\mathsf{B}_3^+) = \big\langle s, t \mid \alpha : sts \Rightarrow tst, \ \beta : tst \Rightarrow sts \big\rangle.$$

• Rule-labelling of $\Sigma(B_3^+)$, [van Oostrom, '08].

• well-founded labelling of the set of rewriting steps \sum_{step}

$$\psi: \Sigma_{step} \longmapsto (\mathbb{N}, \leq),$$

invariance with the algebraic context

 $\psi(u\alpha v) = \psi(\alpha)$ and $\psi(u\beta v) = \psi(\beta), \quad u, v \in \{s, t\}^*,$

constant rule-labelling

 $\psi(ulpha v) = \psi(lpha) = 1$ and $\psi(ueta v) = \psi(eta) = 1$, $u, v \in \{s, t\}^*$.

Application: braid monoid B₃⁺

Extension of $\Sigma(B_3^+)$ by

generating decreasing confluence diagrams

a generating cycle

• The extended presentation of B_3^+

 $\langle s, t \mid \alpha : sts \Rightarrow tst, \beta : tst \Rightarrow sts \mid A, B, C, D, E \rangle$

is coherent.

By homotopical reduction:

$$\langle s, t \mid \alpha, \varkappa \mid A, \mathcal{K}, \mathcal{K}, \mathcal{K}, \mathcal{K}, \mathcal{K} \rangle.$$

with A > B > C > D > E and $\beta > \alpha$.

▶ A coherent presentation of B_3^+

 $\langle s, t \mid \alpha : sts \Rightarrow tst \mid \emptyset \rangle.$

IV. Coherence by decreasingness for $\mathcal{K}\text{-}\mathsf{SRS}$

Application: plactic monoid P_n

 \mathcal{K} -Presentation $\Sigma(P_n)$ of P_n

▶ a set $[n] = \{1, 2, ..., n\}$ of generators,

a crystal basis on [n]

$$1 \xrightarrow{1} 2 \xrightarrow{2} \ldots \xrightarrow{n-2} n-1 \xrightarrow{n-1} n,$$

a set of oriented Knuth's relations

$$x \le y < z, \qquad \alpha_{x,y,z} : yzx \Rightarrow yxz$$

 $x < y \le z, \qquad \beta_{x,y,z} : xzy \Rightarrow zxy$

with $x, y, z \in [n]$.

Application: compatibility with Kashiwara's operators

Kashiwara's operators on [n] ▶ For each i in {1,2,...,n-1} f_i(i) = i + 1 and e_i(i + 1) = i Kashiwara's operators on [n]* ▶ Example: compute f₁(121)

Then, $f_1(121) = 12f_1(1) = 122$.

Highest weight word w in $[n]^*$: $e_i(w)$ not defined for each $i \in \{1, \ldots, n-1\}$.

 $1 \ 2 \ 1 \ + \ - \ +$

+

Application: compatibility with Kashiwara's operators

Remark: the image of a rewriting rule by Kashiwara's operators is a rewriting rule in the same direction.

Example: Let $\alpha_{1,1,2}$: 121 \Rightarrow 112. We have:

•
$$f_1(121) = 122$$
 and $f_1(112) = 212$,
• $\beta_{1,2,2} : 122 \Rightarrow 212$,

Then,

$$f_1(\alpha_{1,1,2}) = \beta_{1,2,2} : f_1(121) \Rightarrow f_1(112).$$

- ▶ We obtain a *K*-2-polygraph, [Uran, '22], presenting *P_n*.
- Remark: The Young tableaux are recurrent forms.

Application: Well-fouded labelling of $\Sigma(P_n)$

A well-founded labelling on the set of rewriting steps Σ_{step}

 $\psi: \Sigma_{step} \longmapsto (\mathbb{N}, \leq),$

 \blacktriangleright a totally ordered set of labels on the set of rewriting rules Σ_2

 $\psi: \Sigma_2 \longmapsto \mathbb{N}$

For $wfw' \in \Sigma_{step}$, with $w, w' \in [n]^*$ and $f \in \Sigma_2$ $\psi(wfw') = (|w| - 1, \psi(f)),$

with $|1_{[n]^*}| = 0$ and |w| indicates the length of w.

Application: plactic monoid P_n

Extension of $\Sigma(P_n)$ by

► generating *K*-decreasing hw-confluence diagrams

a generating hw-cycle

Application: plactic monoid P_n

The extended presentation of P_n

 $\langle 1, \ldots, n \mid \alpha_{1,1,2}, k(\alpha_{1,1,2}) \mid A^0, k(A^0), B^0, k(B^0), C^0, k(C^0), E^0, k(E^0) \rangle$

with k a a sequence of Kashiwara's operators, is coherent.

By homotopical reduction:

 $\langle 1, \ldots, n \mid \alpha_{1,1,2}, k(\alpha_{1,1,2}) \mid \mathcal{A}, k(\mathcal{A}^{0}), \mathcal{B}, k(\mathcal{B}^{0}), \mathcal{C}^{0}, k(\mathcal{C}^{0}), \mathcal{E}^{0}, k(\mathcal{E}^{0}) \rangle.$

A coherent presentation of P_n

 $\langle 1, \ldots, n \mid \alpha_{1,1,2}, k(\alpha_{1,1,2}) \mid C^0, k(C^0), E^0, k(E^0) \rangle.$

with k a a sequence of Kashiwara's operators

V. Perspectives

- Applying our result of coherence by decreasingness to other algebraic structures with quasi-terminating presentations.
- apply decreasingness techniques to study Chinese monoids, [Endrullis-Klop, '19].