Coherence by decreasingness for monoids

Séminaire de réécriture
24 Novembre 2022
I. Motivation
II. Coherence by decreasingness for ARS
III. Coherence by decreasingness for SRS
IV. Coherence by decreasingness for \mathcal{K}-SRS
V. Perspectives
I. Motivation

Computing homotopy bases for finitely presented monoids

Let M be a monoid

- generated by a finite set X of generators,
- submitted to a finite set $R \subseteq X^{*} \times X^{*}$ of oriented relations, called rewriting rules.

Question: What is an homotopy basis?

- A syzygy: a relation between relations

- An homotopy basis: a family of syzygies that generates all syzygies of (X, R).

Convergent presentations of monoids

Let M be a monoid finitely presented.
Question: How to compute an homotopy basis?
Convergent presentation (X, R) of M :

- Terminating: all computations end.
- In general define: left degree-wise lexicographic order. Fix an order \prec on elements of X.

$$
\begin{aligned}
& u>_{\text {lex }} v \text { iff } \ell(u)>\ell(v) \text { or } \ell(u)=\ell(v) \\
& \quad \text { and } u=x_{1} x_{2} \ldots x_{k-1} x_{k} x_{k+1} \ldots x_{n}, \\
& \quad v=x_{1} x_{2} \ldots x_{k-1} y_{k} y_{k+1} \ldots y_{n} \text { with } y_{k} \prec x_{k} .
\end{aligned}
$$

- Confluent: the computation converges to the same result (if it exists).

Squier's completion theorem, '94

Let $M=\langle X, R\rangle$ be a monoid presented by a finite convergent presentation.

- A critical branching: an overlapping of two rewriting rules that is minimal with respect to the rewriting context.

There are two shapes of critical branchings:

and

- The family of syzygies formed by generating confluences

indexed by critical branchings, form an homotopy basis.

Another method to compute homotopy bases

Let $M=\langle X, R\rangle$ be a monoid finitely presented such that

- each word M is represented by a recurrent form, i.e. a normal form modulo cycles.
- each critical pair is decreasing, which generalizes the confluence property by adding a well-founded labelling on rewriting steps, [van Oostrom, '94].

Question: How to compute an homotopy basis of (X, R) ?

Example 1: Braid monoid B_{3}^{+}

Presentation of B_{3}^{+}

$$
\langle s, t \mid \alpha: s t s \Rightarrow t s t\rangle \text {. }
$$

- Termination: degree lexicographic order on $s>t$.
- One non confluent critical branching:

Example 1: Braid monoid B_{3}^{+}

Knuth-Bendix completion: it gives, by adding

a convergent presentation of B_{3}^{+}on the two generators s and t, which is infinite

Theorem. B_{3}^{+}does not admit a finite convergent presentation with the two generators s and t, Kapur \& Narendran, ' 85.

Example 1: Braid monoid B_{3}^{+}

Presentation of B_{3}^{+}by adjunction of a new generator a

$$
\langle s, t, a \mid \alpha: t a \Rightarrow a s, \beta: s t \Rightarrow a\rangle
$$

standing for the product st.

- Termination: degree lexicographic order on $s>t>a$.
- Knuth-Bendix completion:

The SRS $<s, t, a \mid t a \stackrel{\alpha}{\Rightarrow} a s, s t \stackrel{\beta}{\Rightarrow} a$, sas $\stackrel{\gamma}{\Rightarrow}$ aa, saa $\stackrel{\delta}{\Rightarrow}$ aat $>$ is a convergent presentation of B_{3}^{+}.

Example 1: Braid monoid B_{3}^{+}

By Squier's completion of

$$
\langle s, t, a| \alpha: \text { ta } \Rightarrow \text { as, } \beta: s t \Rightarrow a, \stackrel{\gamma}{\Rightarrow} \text { aa }, \text { saa } \stackrel{\delta}{\Rightarrow} \text { att }\rangle,
$$

we obtain an homotopy basis formed by these generating confluences

Another method to compute an homotopy basis

 for B_{3}^{+}We consider a presentation of B_{3}^{+}, [Alleaume-Malbos, '17]:

$$
\Sigma\left(\mathrm{B}_{3}^{+}\right)=\langle s, t \mid \alpha: s t s \Rightarrow t s t, \beta: t s t \Rightarrow s t s\rangle .
$$

by working on the orientation of the rewriting rules instead of adding new generators.

Question:
Can we compute an homotopy basis of $\Sigma\left(\mathrm{B}_{3}^{+}\right)$?

Example 2: Plactic monoid P_{n}

Plactic monoid P_{n}

- generated by $1<2<\ldots<n$
- and submitted to Knuths relations

$$
\begin{array}{ll}
x \leq y<z, & y z x \Rightarrow y x z \\
x<y \leq z, & z x y \Rightarrow x z y
\end{array}
$$

with $x, y, z \in\{1,2,3, \ldots, n\}$.

- Termination: degree lexicographic order on $1<2<\ldots<n$.
- Some non confluent critical branchings:

Example 2: Plactic monoid P_{n}

Knuth-Bendix completion: it gives, by adding

a convergent presentation of P_{n} on the generators $1, \ldots, n$, which is infinite.

Theorem. $\forall n>3, \mathrm{P}_{n}$ does not admit a finite convergent presentation by Knuth-Bendix completion of the Knuth presentation with the degree lexicographic order, Kubat and Okninski, '14.

Example 2: plactic monoids P_{n}

- Young tableau over $\{1, \ldots, n\}$:

2	2	3	5	5
3	3	4	6	
4	5			

$\operatorname{Col}(n)$: set of columns.

- Schensted algorithm: any word w in $\{1, \ldots, n\}^{*} \rightsquigarrow$ Young tableau $P(w)$.
- Notation: any two columns $u^{\times} v$ iff $T=c_{u} c_{v}$ is not a Young tableau.
- Oriented relations on $\operatorname{Col}(n)^{*}$:

$$
\operatorname{Col}_{2}(n)=\left\{c_{u} c_{v} \Rightarrow c_{w} c_{w^{\prime}} \mid u^{\times} v \in \operatorname{Col}(n) \text { and } P(u v)=c_{w} c_{w^{\prime}}\right\}
$$

Example 2: Plactic monoid P_{n}

- The column presentation $\operatorname{Col}_{2}(n)$ is a convergent presentation of P_{n}.
- By Squier's completion of

$$
\operatorname{Col}_{2}(n)=\left\{c_{u} c_{v} \Rightarrow c_{w} c_{w^{\prime}} \mid u^{\times} v \in \operatorname{Col}(n) \text { and } P(u v)=c_{w} c_{w^{\prime}}\right\},
$$

we obtain an homotopy basis, denoted $\mathrm{Col}_{3}(n)$, formed by these confluences

indexed by critical branchings, [Hage-Malbos, '16].

Another method to compute an homotopy basis

 for P_{n}We consider a presentation of P_{n} :

$$
\Sigma\left(P_{n}\right)=\left\langle 1, \ldots, n \mid y z x \stackrel{\alpha_{x, y, z}}{\Rightarrow} y x z, x \leq y<z ; \quad x z y \stackrel{\beta_{x, y, z}}{\Rightarrow} z x y, x<y \leq z\right\rangle .
$$

by working on the orientation of the rewriting rules instead of adding new generators.

Questions:
Can we compute an homotopy basis of $\Sigma\left(P_{n}\right)$? Is it smaller than the homotopy basis $\mathrm{Col}_{3}(n)$ of the column presentation $\mathrm{Col}_{2}(n)$?
II. Coherence by decreasingness for ARS

One-dimensional polygraphs

A 1-polygraph X : modelization of abstract rewriting system.

- set of 0-generators X_{0},
- set of 1-generators X_{1}, called rewriting steps,
- source and target maps

$$
X_{0} \stackrel{s_{0}}{t_{0}} X_{1}
$$

Free categories over a 1-polygraph X :

- free 1-category X_{1}^{*} whose morphisms:

$$
x_{0} \xrightarrow{u_{1}} x_{1} \xrightarrow{u_{2}} x_{2} \xrightarrow{u_{3}} \ldots \xrightarrow{u_{n}} x_{n}
$$

with $u_{i} \in X_{1}$.

- free $(1,0)$-category X_{1}^{\top} whose morphisms:

$$
x_{0} \stackrel{u_{1}}{\longleftrightarrow} x_{1} \stackrel{u_{2}}{\longleftrightarrow} x_{2} \stackrel{u_{3}}{\longleftrightarrow} \ldots \stackrel{u_{n}}{\longleftrightarrow} x_{n}
$$

with $u_{i}: x_{i-1} \rightarrow x_{i}$ or $u_{i}: x_{i} \rightarrow x_{i-1}$.

van Oostrom's decreasingness theory: well-founded labelling

A Well-founded labelled 1-polygraph is a data $\left(X, I, \leq_{I}, \psi\right)$ made of:

- a 1-polygraph X,
- well-founded ordered set $\left(I, \leq_{I}\right)$ of labels,
- well-founded labelling:

$$
\begin{aligned}
\psi: & X_{1} \\
& \longmapsto\left(I, \leq_{1}\right) \\
u & \longmapsto \psi(u) .
\end{aligned}
$$

Given a 1-cell $f=x_{0} \xrightarrow{u_{1}} x_{1} \xrightarrow{\mu_{2}} x_{2} \xrightarrow{u_{3}} \ldots \xrightarrow{u_{3}} x_{n} \in X_{1}^{*}$, we denote by

$$
L^{\prime}(f)=\left\{\psi\left(u_{1}\right), \ldots, \psi\left(u_{n}\right)\right\}
$$

the set of labels of rewriting steps in f.

Locally decreasingness

- A local branching (f, g) : a pair of rewriting steps f and g with $s_{0}(f)=s_{0}(g)$.
- A decreasing confluence diagram of (f, g) is defined by

with $f^{\prime}, g^{\prime}, f^{\prime \prime}, g^{\prime \prime}, h_{1}, h_{2} \in X_{1}^{*}$ and such that
- $k<\psi(f)$, for all k in $L^{\prime}\left(f^{\prime}\right)$,
- $g^{\prime \prime}$ is an identity or a 1-generator labelled by $\psi\left(g^{\prime}\right)=\psi(g)$,
- $k<\psi(f)$ or $k<\psi(g)$, for all k in $L^{\prime}\left(h_{1}\right)$.
- symmetrically for $g^{\prime}, f^{\prime \prime}$ and h_{2}.

van Oostrom's confluence theorem

Let $\left(X, I, \leq_{I}, \psi\right)$ be a well-founded labelled 1-polygraph.

- A (finite) multiset over $I:$ a function $A: I \rightarrow \mathbb{N}$ such that the set $\{i \in I \mid A(i) \neq 0\}$ is finite.
- We denote $M(I)$ the set of finite multisets over I.
- Rq: we generalize \leq_{I} to a well-founded order $\leq_{m u l}$ on $M(I)$.
- lexicographic maximum measure: the multiset of the lexicographically maximal step labels [van Oostrom, '94].
- Theorem: Any locally decreasing well-founded polygraph is confluent, [van Oostrom, '94].

Recurrent forms, [Zilli, '84]

Let X be a 1-polygraph.

- The X-congruence: equivalence relation on X_{0} defined by

$$
x \approx^{x} y \quad \Longleftrightarrow \quad \exists f: x \rightarrow y \in X_{1}^{\top} .
$$

We denote

- Equivalence set: $\bar{X}=X_{0} / \approx^{X}$.
- Canonical projection: $\pi: X_{0} \rightarrow \bar{X}$.
- A recurrent 0 -generator x of a 1-polygraph X : for each 1-cell

$$
f: x \rightarrow y \in X_{1}^{*}
$$

there exists a 1-cell

$$
g: y \rightarrow x \in X_{1}^{*}
$$

Recurrence property

- A section of a 1-polygraph X : a section of π

$$
\begin{aligned}
r: & \bar{X} & \longmapsto X_{0} & \\
& & & \pi(r(\bar{x}))=\bar{x} .
\end{aligned}
$$

- We denote $r(\bar{x})=\widetilde{x}$.
- a recurrent section r : for each $x \in X_{0}, \tilde{x}$ is recurrent.
- A recurrent 1-polygraph X : admits a recurrent section
- each equivalence class \bar{x} is represented by a recurrent 0 -generator \widetilde{x}.

coherent extensions of 1-polygraphs

- A sphere in X_{1}^{\top} : a pair (f, g) of 1-cells such that

$$
s_{0}(f)=s_{0}(g) \quad \text { and } \quad t_{0}(f)=t_{0}(g)
$$

- Denote by $\operatorname{Sph}\left(X_{1}^{\top}\right)$ the set of spheres of X_{1}^{\top}.
- A cellular extension of X_{1}^{\top} : a set X_{2} with a map $X_{2} \rightarrow \operatorname{Sph}\left(X_{1}^{\top}\right)$.
- Elements of X_{2} are called 2-generators

- A (2,0)-polygraph X is defined by
- a 1-polygraph $\left(X_{0}, X_{1}\right)$,
- a cellular extension X_{2} of X_{1}^{\top}

coherent extensions of 1-polygraphs

Let X be a $(2,0)$-polygraph.

- Free $(2,0)$-category X_{2}^{\top} on X.
- its 2-cells are generated via \star_{0} and \star_{1} of 2-generators in X_{2}, of their inverses and of identities of 1-cells of X_{1}^{\top}.
- An homotopy basis X_{2} : a cellular extension of X_{2}^{\top} such that for any sphere (f, g), there exists a 2-cell

$$
A: f \Rightarrow g \in X_{2}^{\top}
$$

- A coherent $(2,0)$-polygraph X is defined by
- a 1-polygraph $\left(X_{0}, X_{1}\right)$,
- an homotopy basis X_{2}.

Coherence properties

A coherently recurrent $(2,0)$-polygraph is defined by

- a recurrent 1-polygraph $\left(X_{0}, X_{1}\right)$,
- a recurrent section $r(\bar{x})=\widetilde{x}$ of $\left(X_{0}, X_{1}\right)$,
- a recurrent cellular extension X_{2} of X_{1}^{\top} : for any 1-cell

$$
f: \widetilde{x} \rightarrow \widetilde{x} \in X_{1}^{*}
$$

there exists a 2 -cell

$$
A: f \Rightarrow 1_{\tilde{x}} \in X_{2}^{\top}
$$

Coherence properties

A coherently locally decreasing (2,0)-polygraph:

- a well-founded labelled 1-polygraph $\left(X_{0}, X_{1}\right)$,
- a well-founded labellinf ψ of $\left(X_{0}, X_{1}\right)$,
- a decreasing cellular extension X_{2} of X_{1}^{\top} : for any local branching (f, g), there exists a decreasing confluence diagram

and a 2-cell $A_{f, g}$ in X_{2}^{\top}.

Main theorem

Theorem. Let X be a coherently recurrent $(2,0)$-polygraph. If X is locally coherently decreasing, then X is coherent.
III. Coherence by decreasingness for SRS

Application: braid monoid B_{3}^{+}

- Presentation of B_{3}^{+}

$$
\Sigma\left(\mathrm{B}_{3}^{+}\right)=\langle s, t \mid \alpha: s t s \Rightarrow t s t, \beta: t s t \Rightarrow s t s\rangle .
$$

- Rule-labelling of $\Sigma\left(\mathrm{B}_{3}^{+}\right)$, [van Oostrom, '08].
- well-founded labelling of the set of rewriting steps $\Sigma_{\text {step }}$

$$
\psi: \Sigma_{\text {step }} \longmapsto(\mathbb{N}, \leq),
$$

- invariance with the algebraic context

$$
\psi(u \alpha v)=\psi(\alpha) \quad \text { and } \quad \psi(u \beta v)=\psi(\beta), \quad u, v \in\{s, t\}^{*},
$$

- constant rule-labelling

$$
\psi(u \alpha v)=\psi(\alpha)=1 \quad \text { and } \quad \psi(u \beta v)=\psi(\beta)=1, \quad u, v \in\{s, t\}^{*} .
$$

Application: braid monoid B_{3}^{+}

Extension of $\Sigma\left(B_{3}^{+}\right)$by

- generating decreasing confluence diagrams

- a generating cycle

Application: braid monoid B_{3}^{+}

- The extended presentation of B_{3}^{+}

$$
\langle s, t| \alpha: s t s \Rightarrow t s t, \beta: t s t \Rightarrow s t s|A, B, C, D, E\rangle
$$

is coherent.

- By homotopical reduction:

$$
\langle s, t| \alpha, \mathbb{X}|\not \subset, \mathbb{Z}, \notin, \notin, \notin \mathcal{E}\rangle .
$$

with $A>B>C>D>E$ and $\beta>\alpha$.

- A coherent presentation of B_{3}^{+}

$$
\langle s, t| \alpha: s t s \Rightarrow t s t|\emptyset\rangle
$$

IV. Coherence by decreasingness for \mathcal{K}-SRS

Application: plactic monoid P_{n}

\mathcal{K}-Presentation $\Sigma\left(\mathrm{P}_{n}\right)$ of P_{n}

- a set $[n]=\{1,2, \ldots, n\}$ of generators,
- a crystal basis on [n]

$$
1 \xrightarrow{1} 2 \xrightarrow{2} \ldots \xrightarrow{n-2} n-1 \xrightarrow{n-1} n,
$$

- a set of oriented Knuth's relations

$$
\begin{aligned}
& x \leq y<z, \quad \alpha_{x, y, z}: y z x \Rightarrow y x z \\
& x<y \leq z, \quad \beta_{x, y, z}: x z y \Rightarrow z x y
\end{aligned}
$$

with $x, y, z \in[n]$.

Application: compatibility with Kashiwara's operators

Kashiwara's operators on [n]

- For each i in $\{1,2, \ldots, n-1\}$

$$
f_{i}(i)=i+1 \quad \text { and } \quad e_{i}(i+1)=i
$$

Kashiwara's operators on [n]*

- Example: compute $f_{1}(121)$

$$
\begin{array}{lll}
1 & 2 & 1 \\
+ & - & + \\
& & +
\end{array}
$$

Then, $f_{1}(121)=12 f_{1}(1)=122$.
Highest weight word w in $[n]^{*}: e_{i}(w)$ not defined for each $i \in\{1, \ldots n-1\}$.

Application: compatibility with Kashiwara's operators

- Remark: the image of a rewriting rule by Kashiwara's operators is a rewriting rule in the same direction.

Example: Let $\alpha_{1,1,2}: 121 \Rightarrow 112$. We have:

- $f_{1}(121)=122$ and $f_{1}(112)=212$,
- $\beta_{1,2,2}: 122 \Rightarrow 212$,

Then,

$$
f_{1}\left(\alpha_{1,1,2}\right)=\beta_{1,2,2}: f_{1}(121) \Rightarrow f_{1}(112) .
$$

- We obtain a \mathcal{K}-2-polygraph, [Uran, '22], presenting P_{n}.
- Remark: The Young tableaux are recurrent forms.

Application: Well-fouded labelling of $\Sigma\left(P_{n}\right)$

A well-founded labelling on the set of rewriting steps $\Sigma_{\text {step }}$

$$
\psi: \Sigma_{\text {step }} \longmapsto(\mathbb{N}, \leq),
$$

- a totally ordered set of labels on the set of rewriting rules Σ_{2}

$$
\psi: \quad \Sigma_{2} \longmapsto \mathbb{N}
$$

- For $w f w^{\prime} \in \Sigma_{\text {step }}$, with $w, w^{\prime} \in[n]^{*}$ and $f \in \Sigma_{2}$

$$
\psi\left(w f w^{\prime}\right)=(|w|-1, \psi(f))
$$

with $\left|1_{[n]^{*}}\right|=0$ and $|w|$ indicates the length of w.

Application: plactic monoid P_{n}

Extension of $\Sigma\left(\mathrm{P}_{n}\right)$ by

- generating \mathcal{K}-decreasing hw-confluence diagrams

- a generating hw-cycle

Application: plactic monoid P_{n}

- The extended presentation of P_{n}
$\langle 1, \ldots, n| \alpha_{1,1,2}, k\left(\alpha_{1,1,2}\right)\left|A^{0}, k\left(A^{0}\right), B^{0}, k\left(B^{0}\right), C^{0}, k\left(C^{0}\right), E^{0}, k\left(E^{0}\right)\right\rangle$.
with k a a sequence of Kashiwara's operators, is coherent.
- By homotopical reduction:
$\langle 1, \ldots, n| \alpha_{1,1,2}, k\left(\alpha_{1,1,2}\right)\left|A^{0}, k\left(A^{0}\right), B^{0}, k\left(B^{0}\right), C^{0}, k\left(C^{0}\right), E^{0}, k\left(E^{0}\right)\right\rangle$.
- A coherent presentation of P_{n}

$$
\langle 1, \ldots, n| \alpha_{1,1,2}, k\left(\alpha_{1,1,2}\right)\left|C^{0}, k\left(C^{0}\right), E^{0}, k\left(E^{0}\right)\right\rangle .
$$

with k a a sequence of Kashiwara's operators

V. Perspectives

Perspectives

- Applying our result of coherence by decreasingness to other algebraic structures with quasi-terminating presentations.
- apply decreasingness techniques to study Chinese monoids, [Endrullis-Klop, '19].

