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I. Motivation
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Computing homotopy bases for �nitely presented
monoids

Let M be a monoid

▶ generated by a �nite set X of generators,
▶ submitted to a �nite set R ⊆ X ∗ × X ∗ of oriented relations, called

rewriting rules.

Question: What is an homotopy basis?

▶ A syzygy: a relation between relations
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▶ An homotopy basis: a family of syzygies that generates all
syzygies of (X ,R).
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Convergent presentations of monoids

Let M be a monoid �nitely presented.

Question: How to compute an homotopy basis?

Convergent presentation (X ,R) of M:
▶ Terminating: all computations end.

▶ In general de�ne: left degree-wise lexicographic order. Fix an order ≺
on elements of X .

u >lex v i� ℓ(u) > ℓ(v) or ℓ(u) = ℓ(v)

and u = x1x2 . . . xk−1xkxk+1 . . . xn,

v = x1x2 . . . xk−1ykyk+1 . . . yn with yk ≺ xk .

▶ Con�uent: the computation converges to the same result (if it exists).
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Squier's completion theorem, ′
94

Let M =
〈
X ,R

〉
be a monoid presented by a �nite convergent presentation.

▶ A critical branching: an overlapping of two rewriting rules that is
minimal with respect to the rewriting context.

There are two shapes of critical branchings:
EY

��

and

EY

��

▶ The family of syzygies formed by generating con�uences
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indexed by critical branchings, form an homotopy basis.
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Another method to compute homotopy bases

Let M = ⟨X ,R⟩ be a monoid �nitely presented such that

▶ each word M is represented by a recurrent form, i.e. a normal form
modulo cycles.

▶ each critical pair is decreasing, which generalizes the con�uence
property by adding a well-founded labelling on rewriting steps, [van
Oostrom, '94].

Question: How to compute an homotopy basis of (X ,R)?
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Example 1: Braid monoid B+
3

Presentation of B+
3 〈

s, t
∣∣ α : sts ⇒ tst

〉
.

▶ Termination: degree lexicographic order on s > t.

▶ One non con�uent critical branching:

sttst

ststs

stα (<

αts "6 tstts
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Example 1: Braid monoid B+
3

Knuth-Bendix completion: it gives, by adding

sttst

β

~�

ststs

stα (<

αts "6 tstts

stttst

γ

~�

sttsts

sttα ';

βs #7 tsttss

stttstts βts

�/
sttsttst

βtst (<

sttβ "6

tsttssts ....

tsttsαg{tsttstst

a convergent presentation of B+
3
on the two generators s and t, which is

in�nite

sttttst

δ . . .

~�

stttsts

stttα (<

γs "6 tsttsss

Theorem. B+
3

does not admit a �nite convergent presentation

with the two generators s and t, Kapur & Narendran, '85.
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Example 1: Braid monoid B+
3

Presentation of B+
3
by adjunction of a new generator a〈
s, t, a

∣∣ α : ta ⇒ as, β : st ⇒ a
〉

standing for the product st.

▶ Termination: degree lexicographic order on s > t > a.

▶ Knuth-Bendix completion:

aa

sta

βa (<

sα "6 sas

γ

L` aat

sast

γt (<

saβ !5 saa

δ

L` aaas

sasas

γas ,@

saγ �3

aata

aaα^r

saaa δa

;O

aaaa aaast
aaaβey

sasaa

γaa ,@

saδ
�0
saaat

δat
%9 aatat

aaαt

J^

The SRS < s, t, a | ta α⇒ as , st
β⇒ a , sas

γ⇒ aa , saa
δ⇒ aat > is a

convergent presentation of B+
3
.
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Example 1: Braid monoid B+
3

By Squier's completion of〈
s, t, a

∣∣ α : ta ⇒ as, β : st ⇒ a,
γ⇒ aa , saa

δ⇒ aat
〉
,

we obtain an homotopy basis formed by these generating con�uences

aa

sta

βa (<

sα "6

A
��

sas

γ

L` aat

sast

γt (<

saβ !5

B
��

saa

δ

L` aaas

C
��

sasas

γas ,@

saγ �3

aata

aaα^r

saaa δa

;O

aaaa

D
��

aaast
aaaβey

sasaa

γaa ,@

saδ
�0
saaat

δat
%9 aatat

aaαt

J^
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Another method to compute an homotopy basis
for B+

3

We consider a presentation of B+
3
, [Alleaume-Malbos, '17]:

Σ(B+
3
) =

〈
s, t

∣∣ α : sts ⇒ tst, β : tst ⇒ sts
〉
.

by working on the orientation of the rewriting rules instead of adding new
generators.

Question:
Can we compute an homotopy basis of Σ(B+

3
)?
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Example 2: Plactic monoid Pn

Plactic monoid Pn

▶ generated by 1 < 2 < ... < n
▶ and submitted to Knuths relations

x ≤ y < z , yzx ⇒ yxz

x < y ≤ z , zxy ⇒ xzy

with x , y , z ∈ {1, 2, 3, . . . , n}.

▶ Termination: degree lexicographic order on 1 < 2 < . . . < n.

▶ Some non con�uent critical branchings:

3112

3121

(<

"6 1321
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Example 2: Plactic monoid Pn

Knuth-Bendix completion: it gives, by adding

3112

��

3121

(<

"6 1321

4112

��

4121

(<

"6

....

1421

a convergent presentation of Pn on the generators 1, . . . , n, which is
in�nite.

Theorem. ∀n > 3, Pn does not admit a �nite convergent pre-

sentation by Knuth-Bendix completion of the Knuth presentation

with the degree lexicographic order, Kubat and Okninski, '14.
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Example 2: plactic monoids Pn

▶ Young tableau over {1, . . . , n}:

2 2 3 5 5

3 3 4 6

4 5

Col(n): set of columns.

▶ Schensted algorithm:

any word w in {1, . . . , n}∗ ⇝ Young tableau P(w).

▶ Notation: any two columns u×v i� T = cucv is not a Young tableau.

▶ Oriented relations on Col(n)∗:

Col2(n) =
{
cucv ⇒ cwcw ′

∣∣ u×v ∈ Col(n) and P(uv) = cwcw ′
}
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Example 2: Plactic monoid Pn

▶ The column presentation Col2(n) is a convergent presentation of Pn.

▶ By Squier's completion of

Col2(n) =
{
cucv ⇒ cwcw ′

∣∣ u×v ∈ Col(n) and P(uv) = cwcw ′
}
,

we obtain an homotopy basis, denoted Col3(n), formed by these con-
�uences

cucece′ %9

��

cbcb′ce′

�+
cucvct

(<

!5

cbcdca′

cwcw ′ct %9 cwcaca′

2F

indexed by critical branchings, [Hage-Malbos, '16].
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Another method to compute an homotopy basis
for Pn

We consider a presentation of Pn:

Σ(Pn) =
〈
1, . . . , n

∣∣ yzx αx,y,z⇒ yxz , x ≤ y < z ; xzy
βx,y,z⇒ zxy , x < y ≤ z

〉
.

by working on the orientation of the rewriting rules instead of adding new
generators.

Questions:
Can we compute an homotopy basis of Σ(Pn)? Is it smaller than the
homotopy basis Col3(n) of the column presentation Col2(n)?
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II. Coherence by decreasingness for ARS
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One-dimensional polygraphs

A 1-polygraph X : modelization of abstract rewriting system.
▶ set of 0-generators X0,
▶ set of 1-generators X1, called rewriting steps,
▶ source and target maps

X0 X1.
t0

oo

s0
oo

Free categories over a 1-polygraph X :
▶ free 1-category X ∗

1
whose morphisms:

x0
u1→ x1

u2→ x2
u3→ . . .

un→ xn

with ui ∈ X1.

▶ free (1, 0)-category X⊤
1

whose morphisms:

x0 oo
u1
// x1 oo

u2
// x2 oo

u3
// . . . oo

un
// xn

with ui : xi−1 → xi or ui : xi → xi−1.
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van Oostrom's decreasingness theory:
well-founded labelling

A Well-founded labelled 1-polygraph is a data (X , I ,≤I , ψ) made of:

▶ a 1-polygraph X ,

▶ well-founded ordered set (I ,≤I ) of labels,

▶ well-founded labelling:

ψ : X1 7−→ (I ,≤I )
u 7−→ ψ(u).

Given a 1-cell f = x0
u1→ x1

u2→ x2
u3→ . . .

un→ xn ∈ X ∗
1
, we denote by

LI (f ) = {ψ(u1), . . . , ψ(un)}

the set of labels of rewriting steps in f .

20/42



Locally decreasingness

▶ A local branching (f , g): a pair of rewriting steps f and g with
s0(f ) = s0(g).

▶ A decreasing con�uence diagram of (f , g) is de�ned by

f
//

g

��

f ′
��

g ′′
��

h1
��

g ′
//

f ′′
//

h2
//

with f ′, g ′, f ”, g”, h1, h2 ∈ X ∗
1
and such that

▶ k < ψ(f ), for all k in LI (f ′),

▶ g ′′ is an identity or a 1-generator labelled by ψ(g ′) = ψ(g),

▶ k < ψ(f ) or k < ψ(g), for all k in LI (h1).

▶ symmetrically for g ′, f ” and h2.
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van Oostrom's con�uence theorem

Let (X , I ,≤I , ψ) be a well-founded labelled 1-polygraph.

▶ A (�nite) multiset over I : a function A : I → N such that the set
{i ∈ I | A(i) ̸= 0} is �nite.

▶ We denote M(I ) the set of �nite multisets over I .

▶ Rq: we generalize ≤I to a well-founded order ≤mul on M(I ).

▶ lexicographic maximum measure: the multiset of the
lexicographically maximal step labels [van Oostrom, '94].

|.| : X ∗
1

7−→ M(I )
f 7−→ |f |

▶ Theorem: Any locally decreasing well-founded polygraph is con�uent,
[van Oostrom, '94].
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Recurrent forms, [Zilli, '84]

Let X be a 1-polygraph.
▶ The X -congruence: equivalence relation on X0 de�ned by

x ≈X y ⇐⇒ ∃ f : x → y ∈ X⊤
1 .

We denote
▶ Equivalence set: X = X0/ ≈X .
▶ Canonical projection: π : X0 → X .

▶ A recurrent 0-generator x of a 1-polygraph X : for each 1-cell

f : x → y ∈ X ∗
1 ,

there exists a 1-cell
g : y → x ∈ X ∗

1 .
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Recurrence property

▶ A section of a 1-polygraph X : a section of π

r : X 7−→ X0

x 7−→ r(x),
π(r(x)) = x .

▶ We denote r(x) = x̃ .

▶ a recurrent section r : for each x ∈ X0, x̃ is recurrent.

▶ A recurrent 1-polygraph X : admits a recurrent section
▶ each equivalence class x is represented by a recurrent 0-generator x̃ .
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coherent extensions of 1-polygraphs

▶ A sphere in X⊤
1
: a pair (f , g) of 1-cells such that

s0(f ) = s0(g) and t0(f ) = t0(g).

▶ Denote by Sph(X⊤
1
) the set of spheres of X⊤

1
.

▶ A cellular extension of X⊤
1
: a set X2 with a map X2 → Sph(X⊤

1
).

▶ Elements of X2 are called 2-generators

x

f
&&

g

88α�� y

▶ A (2, 0)-polygraph X is de�ned by
▶ a 1-polygraph (X0,X1),
▶ a cellular extension X2 of X⊤

1
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coherent extensions of 1-polygraphs

Let X be a (2, 0)-polygraph.

▶ Free (2, 0)-category X⊤
2

on X .
▶ its 2-cells are generated via ⋆0 and ⋆1 of 2-generators in X2, of their

inverses and of identities of 1-cells of X⊤
1
.

▶ An homotopy basis X2: a cellular extension of X⊤
2

such that for any
sphere (f , g), there exists a 2-cell

A : f ⇒ g ∈ X⊤
2

▶ A coherent (2, 0)-polygraph X is de�ned by
▶ a 1-polygraph (X0,X1),
▶ an homotopy basis X2.
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Coherence properties

A coherently recurrent (2, 0)-polygraph is de�ned by

▶ a recurrent 1-polygraph (X0,X1),

▶ a recurrent section r(x) = x̃ of (X0,X1),

▶ a recurrent cellular extension X2 of X⊤
1
: for any 1-cell

f : x̃ → x̃ ∈ X ∗
1 ,

there exists a 2-cell
A : f ⇒ 1x̃ ∈ X⊤

2 .
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Coherence properties

A coherently locally decreasing (2, 0)-polygraph:

▶ a well-founded labelled 1-polygraph (X0,X1),

▶ a well-founded labellinf ψ of (X0,X1),

▶ a decreasing cellular extension X2 of X⊤
1
: for any local branching

(f , g), there exists a decreasing con�uence diagram

y f ′

##

Af ,g
��

x

f 00

g ..

x ′

z g ′

;;

and a 2-cell Af ,g in X⊤
2
.
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Main theorem

Theorem. Let X be a coherently recurrent (2, 0)-polygraph.
If X is locally coherently decreasing, then X is coherent.
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III. Coherence by decreasingness for SRS
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Application: braid monoid B
+
3

▶ Presentation of B+
3

Σ(B+
3
) =

〈
s, t

∣∣ α : sts ⇒ tst, β : tst ⇒ sts
〉
.

▶ Rule-labelling of Σ(B+
3
), [van Oostrom, '08].

▶ well-founded labelling of the set of rewriting steps Σstep

ψ : Σstep 7−→ (N,≤),

▶ invariance with the algebraic context

ψ(uαv) = ψ(α) and ψ(uβv) = ψ(β), u, v ∈ {s, t}∗,

▶ constant rule-labelling

ψ(uαv) = ψ(α) = 1 and ψ(uβv) = ψ(β) = 1, u, v ∈ {s, t}∗.
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Application: braid monoid B
+
3

Extension of Σ(B+
3
) by

▶ generating decreasing con�uence diagrams

tst2

A��

βt
�+

stst

αt ';

sβ
#7

stst

s2ts sα

4H

sts2 αs
�+

B��tsts

βs ';

tα
#7

tsts

t2st tβ

4H

tst2s

C��

βts
�-

ststs

αts ';

stα
#7

ststs

st2st stβ

2F

sts2t αst
�,

D��tstst

βst ';

tsβ
#7

tstst

ts2ts tsα

2F

▶ a generating cycle

sts

α
�,
tst

β

Wk E��
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Application: braid monoid B
+
3

▶ The extended presentation of B+
3〈

s, t
∣∣ α : sts ⇒ tst, β : tst ⇒ sts

∣∣ A,B,C ,D,E〉
is coherent.

▶ By homotopical reduction:〈
s, t

∣∣ α, ��AAβ ∣∣ �SA,��@@B,��@@C ,��@@D,�@E〉.
with A > B > C > D > E and β > α.

▶ A coherent presentation of B+
3〈

s, t
∣∣ α : sts ⇒ tst

∣∣ ∅〉.
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IV. Coherence by decreasingness for K-SRS
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Application: plactic monoid Pn

K-Presentation Σ(Pn) of Pn

▶ a set [n] = {1, 2, . . . , n} of generators,

▶ a crystal basis on [n]

1
1→ 2

2→ . . .
n−2→ n − 1

n−1→ n,

▶ a set of oriented Knuth's relations

x ≤ y < z , αx ,y ,z : yzx ⇒ yxz

x < y ≤ z , βx ,y ,z : xzy ⇒ zxy

with x , y , z ∈ [n].
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Application: compatibility with Kashiwara's
operators

Kashiwara's operators on [n]

▶ For each i in {1, 2, . . . , n − 1}

fi (i) = i + 1 and ei (i + 1) = i

Kashiwara's operators on [n]∗

▶ Example: compute f1(121)

1 2 1
+ − +

+

Then, f1(121) = 12f1(1) = 122.

Highest weight word w in [n]∗: ei (w) not de�ned for each
i ∈ {1, . . . n − 1}.
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Application: compatibility with Kashiwara's
operators

▶ Remark: the image of a rewriting rule by Kashiwara's operators is a
rewriting rule in the same direction.

Example: Let α1,1,2 : 121 ⇒ 112. We have:

▶ f1(121) = 122 and f1(112) = 212,
▶ β1,2,2 : 122 ⇒ 212,

Then,
f1(α1,1,2) = β1,2,2 : f1(121) ⇒ f1(112).

▶ We obtain a K-2-polygraph, [Uran, '22], presenting Pn.

▶ Remark: The Young tableaux are recurrent forms.
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Application: Well-fouded labelling of Σ(Pn)

A well-founded labelling on the set of rewriting steps Σstep

ψ : Σstep 7−→ (N,≤),

▶ a totally ordered set of labels on the set of rewriting rules Σ2

ψ : Σ2 7−→ N

▶ For wfw ′ ∈ Σstep, with w ,w ′ ∈ [n]∗ and f ∈ Σ2

ψ(wfw ′) = (|w | − 1, ψ(f )),

with |1[n]∗ | = 0 and |w | indicates the length of w .
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Application: plactic monoid Pn

Extension of Σ(Pn) by
▶ generating K-decreasing hw-con�uence diagrams

11221
1β1,2,21%9

A0
��

12121

12α1,1,2
v


12121

α1,1,221 -A

12α1,1,2 �1
12112

11232

B0
��12132

α1,1,232 -A

12β1,2,3 �112312
1α1,2,32

%9 12132

α1,1,232

Th 11231
11α1,2,3
�/

C 0
��12131

α1,1,231 /C

12α1,1,3 �/

11213

12113
α1,1,213

/C

▶ a generating hw-cycle

1212

α1,1,22

�.
1122

1β1,2,2

Ym E 0
��
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Application: plactic monoid Pn

▶ The extended presentation of Pn〈
1, . . . , n

∣∣ α1,1,2, k(α1,1,2) ∣∣A0, k(A0),B0, k(B0),C 0, k(C 0),E 0, k(E 0)
〉
.

with k a a sequence of Kashiwara's operators, is coherent.

▶ By homotopical reduction:〈
1, . . . , n

∣∣ α1,1,2, k(α1,1,2) ∣∣��ZZA0,���HHHk(A0),��ZZB0,���H
HHk(B0),C 0, k(C 0),E 0, k(E 0)

〉
.

▶ A coherent presentation of Pn〈
1, . . . , n

∣∣ α1,1,2, k(α1,1,2) ∣∣ C 0, k(C 0),E 0, k(E 0)
〉
.

with k a a sequence of Kashiwara's operators
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V. Perspectives
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Perspectives

▶ Applying our result of coherence by decreasingness to other algebraic
structures with quasi-terminating presentations.

▶ apply decreasingness techniques to study Chinese monoids,
[Endrullis-Klop, '19].
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