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o Posets and associated structures
@ Poset's topology
o Combinatorial criterion (shellability)



@

Order complex

P poset < A(P) associated order complex

Simplicial complex (set of vertices V and faces ¥ < P(V/), stable
by inclusion) defined as :

A A

A(P) = {ao <...< ak|a,-e P—{O,l}}



P poset < A(P) associated order complex

@) (b) (&)
X ST
@ © ®
N7 Ny
(set of vertices V and faces © < P(V), stable
by inclusion) defined as :

A A

A(P) = {ao <...< ak|a;e P—{O,l}}



P poset «> A(P) associated order complex

A(P) = {ao <... < ak|a;e P*{ﬁ,i}}

Cx = Vectc(ap < ... < axlaj e P —{0,1})
k .

Ok(ag < ... < ak) = Z(—l)’(ao <...<&<...<a)
i=0

0 0
S S B L=< N L=

H;(P) = H;i(A(P)) = Ker 0;/Im dj.1 |

3 Hi(P)# 0




Cohen-Macaulay posets are homotope to a bunch of spheres of
same dimensions.



Shellable posets
For F a face in A(P), let us set (F)={G: G < F}.
Definition
A poset is shellable if
o there exists an order on its facets Fq, ..., F; s.t.
° (uf-‘;ll <F,->) N (Fk) est pur (facettes de méme dim.)
o et de dimension dim Fy — 1, Yk € {2,...,t}.




Shellable posets

For F a face in A(P), let us set (F) ={G : G < F}.

Definition

A poset is shellable if
o there exists an order on its facets Fq, ..., F; s.t.
° (uf-‘z_ll <F,->) N (Fk) est pur (facettes de méme dim.)
o et de dimension dim Fx — 1, Vk € {2,..., t}.

Proposition (Folklore, Bjorner 1980)

shellable =—> Cohen-Macaulay




CL-shellability = Chain Lexicographic-shellability

A is a chain which is not strictly
contained in another chain.
Given r a maximal chain of [0, x] and [, y] an
interval, we can define the

[x, y]r :=={zer}u{ze[x, y]}




A is a chain which is not strictly
contained in another chain.
Given r a maximal chain of [0, x] and [, y] an
interval, we can define the

[x, ], :=={zer}u{ze|[x, y]}




CL-shellability [Bjorner-Wachs, 1982]

Definition
A Chain-Lexicographic labelling of T = chain-edge labelling
A ME(M) — A s.t.
@ in each [x, y],, 3'c maximal chain whose associated labels
forms a strictly increasing chain in A.

o c precedes lexicographically all the tuples associated with
other maximal chains of [x, y]|,

A poset that admits a CL-labelling is said to be Cl-shellable.

Proposition (Bjorner-Wachs 1982)
CL-shellable =—> Cohen-Macaulay
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A
of 1 = chain-edge labelling
A ME(M) — A st

@ in each [x, y],, 3'c maximal
chain whose associated
labels forms a

in A.

o cC
all the tuples associated
with other maximal chains
of [x, y],

{1}{2}{3}

(1H2,3})

(11,342}

({1213}

(1,2,3)
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A
of 1 = chain-edge labelling
A ME(M) — A st
@ in each [x, y],, 3'c maximal
chain whose associated

labels forms a
in A.

o cC
all the tuples associated
with other maximal chains
of [x, y],

{1H2}3}{4)}

34 (La2iE)) |
= > ~ <

(2330 (246 (1264 (113424 (1.3.4)2}) (1 4;{23 (1)(2.3.4})
{1.2.3.4)

(2w ([La@e) (e

CQVDR

CL-shellable = shellable —
Cohen-Macaulay
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Shuffle operads and PBW basis
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g Shuffle operads and PBW basis
@ Shuffle operad
@ Bar construction

@ Koszulness
@ PBW operads



Shuffle operads [Dotsenko-Khoroshkin, 2010]

Definition
An ordered species is a functor O : Ord — Set.
On O and Q two ordered species, define
k
000 9(E) = | JOH U Xewi)|,
i=1

weSh(E,[k]) i

where Sh(E, [k]) is the set of surjections w : E — [k] satisfying
the shuffle condition

minw (1) < minw 1(2) <... < minw (k).

I:E— Eif |[E| =1, otherwise.
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Shuffle operads [Dotsenko-Khoroshkin, 2010]
Definition
An ordered species is a functor O : Ord — Set.
On O and Q two ordered species, define

k
O o Q(E UO ( U >< (1<>>),

weSh(E,[K]) i

where Sh(E, [k]) is the set of surjections w : E — [k] satisfying

the shuffle condition

minw (1) < minw1(2) <... < minw (k).

Definition (Dotsenko - Khoroshkin 10)

A shuffle operad is an ordered species O endowed with an

associative product p: O oy O — O and a unit v : [ — O.

14



Free shuffle operad

Let E = (E,)n>1 be a graded set, 1 € E4,

Definition

T (E) = free shuffle operad

Ry=1 T(E)(S)@ is spanned by PBT s.t.
o d leaves labelled by S
@ inner nodes of arity k labelled by Ej

o smallest leaf always in the left subtree

15



Free shuffle operad

Let E = (E,)n>1 be a graded set, 1 € E4,

Definition

T (E) = free shuffle operad

Ry=1 T(E)(S)@ is spanned by PBT s.t.
o d leaves labelled by S
@ inner nodes of arity k labelled by Ej

o smallest leaf always in the left subtree

Here,
o Connected operads: E(n) =0forn=0and n=1
o Associative algebras: E(n) =0 for n # 1

15



2

Normalised reduced bar construction [Fresse 04]

Ni(P) = S-module represented by non-degenerate /-levelled trees.

3 1 4 5 2 6
¥ |
3vd v3 | - v3
2|2 v3
1 vi

Figure: Non-degenerate 3-levelled tree

+ differential given by contracting inner edges.
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Koszul

Definition
An operad is Koszul if the homology of its bar construction is
concentrated in maximal degree.

17



PBW property (for algebraic operads)

BE k-linear basis of E (in Vect)

BT(E) associated (monomial) basis of 7 (E).

Assume that BE is partially ordered, in a way compatible with the
arity:

p<vif ue BE(k) and v e BE(I) with k < /.
Extension to B7(E) s.t.: for o, o/ € T(E)(S;) and
B, B e T(E)(S2),

<o .
{ S Vw pointed shuffle, a o, B < o on .

g<p

(compatibility with the composition)
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PBW property (for algebraic operads)

Definition
A Poincaré-Birkhoff-Witt (PBW) basis for P = T(E)/(R) is a
subset BY of BT(E) such that
o 1e A7,
o BF c BP,
o BF represents a basis of the K-module P,
and satisfying the following conditions:
Q@ for o, B € B either ojw P € B, or a Dy 5 = 27 Y,
where the v € B and v < a0, B in T(E);
Q@ « e B” of shape 7 if and only Ve € 7, oy, € B”.

19



°o@ oo

PBW property

Theorem (consequence of Hoffbeck 10)
An operad equipped with a partially ordered PBW basis is Koszul.

CQVDR
PBW =— Koszul

20



Operadic Partition Posets
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9 Operadic Partition Posets
@ Partition poset
@ Generalized partition poset



(Set) Partition poset I3

{1{2}{3}

({1,3}{2}]

(11,2}{3})
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(Set) Partition poset I3

{1{2}{3}

(L342)) (1243}

T ={m1,..., e} < {u1,. -, Up) = 1

=

L] .
T = Yj=1Mi
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Partition poset [,

{1{2}{3H{4}

(L2aEHa] (3] ((esHe) (a6 (1246 [1HHE.4)

(11.2,3}{4}] ({1,2,4}3}] ({1.2}43, 4} ({1,312, 4} ] ({1.3,4}{2} ) ({1, 4142,3}] ({112, 3,4} )

\\M

23



Homology of a poset

Theorem (Stanley 82, Hanlon 81,Joyal 85)

Hp—1(N,) = Lie(n)* ® sgn,

o0 @ o

[Fresse 04] ~~ Link with the Koszul theory for operad
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Generalized partition poset [Vallette 07]

Definition (Joyal 80)
A set species is a functor O : Set — Set.
On O and Q two set species, define

00Q(E)= |J o) x X Q(p)

ren(E) pem

I E— Eif |[E| =1, otherwise.

Definition
A set operad is a set species O endowed with an associative
product 1 : O o O — O and a unitv: | — O.

It is basic-set if the map pi(y, . p 1V = p(v(va,...,vr)) is
injective.

25



o0 @ o
Generalized partition poset [Vallette 07]

It is basic-set if the map ¢, ) 1 v — p(v(ve,...,1vt)) is
injective.

Definition

A partition decorated by an operad O is a partition
m = {m1,..., 7} with a choice for each part 7; of a 7r,§9 € O(m))

26



o0 @ o
Generalized partition poset [Vallette 07]

It is basic-set if the map ¢, ) 1 v — p(v(ve,...,1vt)) is
injective.
Definition
A partition decorated by an operad O is a partition
m = {m1,..., 7} with a choice for each part 7; of a 7r,§9 € O(m))
Example

e O = Comm ~~

@ O = Ass ~

o O = Lie ~

26



o0 @ o

Generalized partition poset [Vallette 07]

It is basic-set if the map ¢, ) 1 v — p(v(ve,...,1vt)) is
injective.
Definition
A partition decorated by an operad O is a partition
m = {m1,..., 7} with a choice for each part 7; of a 7r,0 € O(m))
Example

@ O = Comm ~- usual partition poset

@ O = Ass ~

o O = Lie ~

26



Generalized partition poset [Vallette 07]

It is basic-set if the map ¢, ) 1 v — p(v(ve,...,1vt)) is
injective.

Definition

A partition decorated by an operad O is a partition

m = {m1,..., 7} with a choice for each part 7; of a 7T,O e O(m))
Example

@ O = Comm ~~ usual partition poset
@ O = Ass ~~ poset of partition with ordered parts

o O = Lie ~

26



Generalized partition poset [Vallette 07]

It is basic-set if the map ¢, ) 1 v — p(v(ve,...,1vt)) is
injective.

Definition

A partition decorated by an operad O is a partition

m = {m1,..., 7} with a choice for each part 7; of a 7T,O e O(m))
Example

@ O = Comm ~~ usual partition poset
@ O = Ass ~~ poset of partition with ordered parts

@ O = Lie ~ it is not a set operad !

26



Generalized partition poset [Vallette 07]

Mo
70 ={xf, . wly <{uf, .. u9y = uC
<=
7T,O = M(V(:Ulila""“""i))

o0 @ o

Example for O = Assoc

(1547)(62)(38) <
« (15642738)

(62154738), (38621547), . ..
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o0 @ o
Generalized partition poset [Vallette 07]

Theorem (Vallette 07)

Operad O is Koszul if and only if each subposet [, 1] of each
MNo(n) is Cohen-Macaulay for « € O({1,...,n}).
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Question 7

ClL-shellable
|
shellable PBW
| |

Cohen-Macaulay <= Koszul

Question
To which poset property correspond PBW property ?

29



Partition poset [,

{1{2}{3H{4}

(L2aEHa] (3] ((esHe) (a6 (1246 [1HHE.4)

(11.2,3}{4}] ({1,2,4}3}] ({1.2}43, 4} ({1,312, 4} ] ({1.3,4}{2} ) ({1, 4142,3}] ({112, 3,4} )

\\M
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Our answer to the question



Outline

@ Our answer to the question
@ Main theorem
@ Counter-example



P = quadratic basic-set operad
M = operadic partition posets
N = {xeP:3veP@ such that X < 7} admit CL-labellings

compatible with isomorphisms of subposets

U

Then, the algebraic operad P = T(E)/(R) associated to P admits
a PBW basis with a partial order.

Let us detail our order !

32



Adjacent chains

Xi+1 Yi+1

Two maximal chains are adjacent
if they only differs by two edges.
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©

Exchange relation

Exchange relation between 3 = v/1 oj v? Ojy =+ 0jy_4 v and
b=yutoj u2oj -0 , u™in N(E) if 7(3) = n(b) and if there
exists k € [[1, | — 1] such that v* = p° and is = js for all

se 1, N\{k, k+ 1}.

4 1 2

1 2 3 3 4
NS N
5= “\u/\/ and b= \/\ |

34



Definition of the partial order

Definition
Fora,be T(E), a# b,
a < b if there exist two adjacent chains @ =r- (g < x < h)-s and
b=r-(g <y<h)-s such that:
o a=m(3) and b = 7w(b),
o the CL-labelling given by X&' of the chain (g < x < h)is the
unique increasing chain (minimal in the lexicographic order) in

this interval.

4

35



Definition of the partial order

Definition
Fora,be T(E), a# b,
a < b if there exist two adjacent chains @ =r- (g < x < h)-s and
b=r-(g <y<h)-s such that:
o a=m(3) and b = 7w(b),
o the CL-labelling given by X&' of the chain (g < x < h)is the
unique increasing chain (minimal in the lexicographic order) in
this interval.

4

Lemma

<t is anti-symmetric as soon as I3 admit CL-labellings compatible
with the isomorphisms of subposets (iso-CL-labellings).

v
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Mz admit iso-CL-labellings. The reflexive and transitive closure of
the relation <, denoted by <, satisfies that

where
0 <jex = lexicographic order on chains,
@ min is the minimum for <ey,

o only maximal chains.

Hence, < is a well-defined partial order.

Minimal elements : a s.t. one of its representatives is the minimal
increasing chain in the interval.

36



~

‘P = quadratic basic-set operad
My = operadic partition posets

{ﬂ,(ﬁd)}d admit CL-labellings compatible with isomorphisms of

subposets

U

Then, the algebraic operad P = T(E)/(R) associated to P admits
a PBW basis with a partial order.

v
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Recover usual PBW basis for Comm and Perm.

38



Counter—example to the converse

q\%@ \%
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Consider the algebra on 13 generators:

o, p, with relations given as follows.

ba = ed
hb = id
oi = pk

le = ek = pi

a, b d e f, hipj kI n,

ea=fb
Jjb = kd
e/ = ph
nf = oh = pj

40
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