Operads with compatible CL-shellable partition poset admit a PBW basis

Bérénice Delcroix-Oger (IRIF) joint with Joan Bellier-Millès (IMT) and Eric Hoffbeck (LAGA) ArXiv : 1811.11770 / Transactions of the AMS https://doi.org/10.1090/tran/8482

Algebraic Rewriting Seminar July, 1st 2021

Outline

- 2 Shuffle operads and PBW basis
- 3 Operadic Partition Posets

4 Our answer to the question

Posets and associated structures

Outline

- Poset's topology
- Combinatorial criterion (shellability)
- 2 Shuffle operads and PBW basis
- Operadic Partition Posets
- Our answer to the question

Order complex

Simplicial complex (set of vertices V and faces $\Sigma \subseteq \mathcal{P}(V)$, stable by inclusion) defined as :

$$\Delta(P) = \{a_0 < \ldots < a_k | a_i \in P - \{\hat{0}, \hat{1}\}\}$$

Order complex

Simplicial complex (set of vertices V and faces $\Sigma \subseteq \mathcal{P}(V)$, stable by inclusion) defined as :

$$\Delta(P) = \{a_0 < \ldots < a_k | a_i \in P - \{\hat{0}, \hat{1}\}\}$$

Homology of a poset

P poset $\leftrightarrow \Delta(P)$ associated order complex

$$\Delta(P) = \{a_0 < \ldots < a_k | a_i \in P - \{\hat{0}, \hat{1}\}\}$$

$$C_{k} = \operatorname{Vect}_{\mathbb{C}}(a_{0} < \ldots < a_{k} | a_{i} \in P - \{\hat{0}, \hat{1}\})$$

$$\partial_{k}(a_{0} < \ldots < a_{k}) = \sum_{i=0}^{k} (-1)^{i}(a_{0} < \ldots < \hat{a}_{i} < \ldots < a_{k})$$

$$C_{-1} = \mathbb{C}.e \xleftarrow{\partial_{0}} C_{0} \xleftarrow{\partial_{1}} \ldots \xleftarrow{\partial_{k}} C_{k} \xleftarrow{\partial_{k+1}} C_{k+1} \xleftarrow{\partial_{k+2}} \ldots$$

$$\tilde{H}_{j}(P) = \tilde{H}_{j}(\Delta(P)) = \operatorname{Ker} \partial_{j} / \operatorname{Im} \partial_{j+1}$$

Cohen-Macaulay Poset : $\exists ! j : \tilde{H}_j(P) \neq 0$

To keep in mind

Cohen-Macaulay posets are homotope to a bunch of spheres of same dimensions.

Shellable posets

For F a face in $\Delta(P)$, let us set $\langle F \rangle = \{G : G \subseteq F\}$.

Definition

A poset is shellable if

- there exists an order on its facets F_1, \ldots, F_t s.t.
- $\left(\cup_{i=1}^{k-1} \langle F_i \rangle \right) \cap \langle F_k \rangle$ est pur (facettes de même dim.)
- et de dimension dim $F_k 1$, $\forall k \in \{2, \ldots, t\}$.

Shellable posets

For F a face in $\Delta(P)$, let us set $\langle F \rangle = \{G : G \subseteq F\}$.

Definition

- A poset is shellable if
 - there exists an order on its facets F_1, \ldots, F_t s.t.
 - $\left(\cup_{i=1}^{k-1} \langle F_i \rangle \right) \cap \langle F_k \rangle$ est pur (facettes de même dim.)
 - et de dimension dim $F_k 1$, $\forall k \in \{2, \ldots, t\}$.

Proposition (Folklore, Björner 1980)

shellable \implies Cohen-Macaulay

Combinatorial criterion : CL-shellability [Björner-Wachs, 1982]

CL-shellability = Chain Lexicographic-shellability

Definition

A maximal chain is a chain which is not strictly contained in another chain. Given r a maximal chain of $[\hat{0}, x]$ and [x, y] an interval, we can define the closed rooted interval

$$[x, y]_r := \{z \in r\} \cup \{z \in [x, y]\}.$$

Definition

A maximal chain is a chain which is not strictly contained in another chain. Given r a maximal chain of $[\hat{0}, x]$ and [x, y] an interval, we can define the closed rooted interval

$$[x, y]_r := \{z \in r\} \cup \{z \in [x, y]\}.$$

Definition

A Chain-Lexicographic labelling of Π = chain-edge labelling $\lambda : ME(\Pi) \rightarrow \Lambda$ s.t.

- in each [x, y]_r, ∃!c maximal chain whose associated labels forms a strictly increasing chain in Λ.
- c precedes lexicographically all the tuples associated with other maximal chains of [x, y]_r

A poset that admits a CL-labelling is said to be CL-shellable.

Proposition (Björner-Wachs 1982)

CL-shellable \implies Cohen-Macaulay

Definition

- A Chain-Lexicographic labelling of Π = chain-edge labelling $\lambda : ME(\Pi) \rightarrow \Lambda \text{ s.t.}$
 - in each [x, y]_r, ∃!c maximal chain whose associated labels forms a strictly increasing chain in Λ.
 - c precedes lexicographically all the tuples associated with other maximal chains of [x, y]_r

Definition

- A Chain-Lexicographic labelling of Π = chain-edge labelling $\lambda : ME(\Pi) \rightarrow \Lambda \text{ s.t.}$
 - in each [x, y]_r, ∃!c maximal chain whose associated labels forms a strictly increasing chain in Λ.
 - c precedes lexicographically all the tuples associated with other maximal chains of $[x, y]_r$

Shuffle operads and PBW basis

Outline

2 Shuffle operads and PBW basis

- Shuffle operad
- Bar construction
- Koszulness
- PBW operads

Operadic Partition Posets

Our answer to the question

Shuffle operads [Dotsenko-Khoroshkin, 2010]

Definition

An ordered species is a functor $\mathcal{O} : Ord \rightarrow Set$. On \mathcal{O} and \mathcal{Q} two ordered species, define

$$\mathcal{O} \circ_{sh} \mathcal{Q}(E) = \bigcup_{k} \mathcal{O}([k]) \times \left(\bigcup_{w \in \mathsf{Sh}(E, [k])} \overset{k}{\underset{i=1}{\times}} \mathcal{Q}(w^{-1}(i)) \right)$$

where Sh(E, [k]) is the set of surjections $w : E \to [k]$ satisfying the *shuffle condition*

$$\min w^{-1}(1) < \min w^{-1}(2) < \ldots < \min w^{-1}(k).$$

 $I: E \mapsto E$ if $|E| = 1, \emptyset$ otherwise.

Shuffle operads [Dotsenko-Khoroshkin, 2010]

Definition

An ordered species is a functor $\mathcal{O} : Ord \rightarrow Set$. On \mathcal{O} and \mathcal{Q} two ordered species, define

$$\mathcal{O} \circ_{sh} \mathcal{Q}(E) = \bigcup_{k} \mathcal{O}([k]) \times \left(\bigcup_{w \in \mathsf{Sh}(E, [k])} \underset{i=1}{\overset{k}{\underset{j=1}{\times}} \mathcal{Q}(w^{-1}(i)) \right)$$

where Sh(E, [k]) is the set of surjections $w : E \rightarrow [k]$ satisfying the *shuffle condition*

$$\min w^{-1}(1) < \min w^{-1}(2) < \ldots < \min w^{-1}(k).$$

Definition (Dotsenko - Khoroshkin 10)

A shuffle operad is an ordered species \mathcal{O} endowed with an associative product $\mu : \mathcal{O} \circ_{sh} \mathcal{O} \to \mathcal{O}$ and a unit $\nu : I \to \mathcal{O}$.

Free shuffle operad

Let $E = (E_n)_{n \ge 1}$ be a graded set, $1 \in E_1$,

Definition

 $\mathcal{T}(E) =$ free shuffle operad

 $\bigotimes_{d \ge 1} \mathcal{T}(E)(S)^{(d)}$ is spanned by PBT s.t.

- d leaves labelled by S
- inner nodes of arity k labelled by E_k
- smallest leaf always in the left subtree

Free shuffle operad

Let $E = (E_n)_{n \ge 1}$ be a graded set, $1 \in E_1$,

Definition

 $\mathcal{T}(E) = \text{free shuffle operad} \\ \bigotimes_{d \ge 1} \mathcal{T}(E)(S)^{(d)} \text{ is spanned by PBT s.t.}$

- *d* leaves labelled by *S*
- inner nodes of arity k labelled by Ek
- smallest leaf always in the left subtree

Here,

- Connected operads: E(n) = 0 for n = 0 and n = 1
- Associative algebras: E(n) = 0 for $n \neq 1$

Normalised reduced bar construction [Fresse 04]

 $\mathcal{N}_{\textit{I}}(\mathcal{P}) = \mathbb{S}\text{-module}$ represented by non-degenerate I-levelled trees.

Figure: Non-degenerate 3-levelled tree

+ differential given by contracting inner edges.

Koszul

Definition

An operad is Koszul if the homology of its bar construction is concentrated in maximal degree.

0 2 0 0

PBW property (for algebraic operads)

 \mathcal{B}^{E} k-linear basis of E (in Vect) $\mathcal{B}^{\mathcal{T}(E)}$ associated (monomial) basis of $\mathcal{T}(E)$. Assume that \mathcal{B}^{E} is partially ordered, in a way compatible with the arity:

$$\mu < \nu$$
 if $\mu \in \mathcal{B}^{\mathcal{E}}(k)$ and $\nu \in \mathcal{B}^{\mathcal{E}}(l)$ with $k < l$.

Extension to $\mathcal{B}^{\mathcal{T}(E)}$ s.t.: for $\alpha, \alpha' \in \mathcal{T}(E)(S_1)$ and $\beta, \beta' \in \mathcal{T}(E)(S_2)$,

$$\left\{\begin{array}{l} \alpha \leqslant \alpha' \\ \beta \leqslant \beta' \end{array} \Rightarrow \forall w \text{ pointed shuffle}, \ \alpha \circ_w \beta \leqslant \alpha' \circ_w \beta'. \end{array}\right.$$

(compatibility with the composition)

PBW property (for algebraic operads)

Definition

A Poincaré-Birkhoff-Witt (PBW) basis for $\mathcal{P} = \mathcal{T}(E)/(R)$ is a subset $\mathcal{B}^{\mathcal{P}}$ of $\mathcal{B}^{\mathcal{T}(E)}$ such that

- $1 \in \mathcal{B}^{\mathcal{P}}$,
- $\mathcal{B}^{E} \subset \mathcal{B}^{\mathcal{P}}$,

• $\mathcal{B}^{\mathcal{P}}$ represents a basis of the $\mathbb{K}\text{-module}\ \mathcal{P}\text{,}$

and satisfying the following conditions:

• for $\alpha, \beta \in \mathcal{B}^{\mathcal{P}}$ either $\alpha \circ_{i,w} \beta \in \mathcal{B}^{\mathcal{P}}$, or $\alpha \circ_{i,w} \beta = \sum_{\gamma} c_{\gamma} \gamma$, where the $\gamma \in \mathcal{B}^{\mathcal{P}}$ and $\gamma < \alpha \circ_{i,w} \beta$ in $\mathcal{T}(E)$;

$$@ \ \alpha \in \mathcal{B}^{\mathcal{P}} \text{ of shape } \tau \text{ if and only } \forall e \in \tau, \ \alpha_{|\tau_e} \in \mathcal{B}^{\mathcal{P}}.$$

PBW property

Theorem (consequence of Hoffbeck 10)

An operad equipped with a partially ordered PBW basis is Koszul.

 $\frac{\mathsf{CQVDR}}{\mathsf{PBW} \implies \mathsf{Koszul}}$

Operadic Partition Posets

Outline

Posets and associated structures

- 2 Shuffle operads and PBW basis
- Operadic Partition PosetsPartition poset
 - Generalized partition poset

(Set) Partition poset Π_3

(Set) Partition poset Π_3

$$\pi = \{\pi_1, \dots, \pi_k\} \leqslant \{\mu_1, \dots, \mu_p\} = \mu$$
$$\Leftrightarrow$$
$$\pi_i = \bigcup_{j=1}^{n_i} \mu_{i_j}$$

Partition poset Π_4

Homology of a poset

Theorem (Stanley 82, Hanlon 81, Joyal 85)

$$H_{n-1}(\Pi_n) = \operatorname{Lie}(n)^* \otimes \operatorname{sgn}_n$$

[Fresse 04] ~> Link with the Koszul theory for operad

Definition (Joyal 80)

A set species is a functor $\mathcal{O} : Set \to Set$. On \mathcal{O} and \mathcal{Q} two set species, define

$$\mathcal{O} \circ \mathcal{Q}(E) = \bigcup_{\pi \in \Pi(E)} \mathcal{O}(\pi) \times \bigotimes_{p \in \pi} \mathcal{Q}(p)$$

$$I: E \mapsto E$$
 if $|E| = 1, \emptyset$ otherwise.

Definition

A set operad is a set species \mathcal{O} endowed with an associative product $\mu : \mathcal{O} \circ \mathcal{O} \to \mathcal{O}$ and a unit $\nu : I \to \mathcal{O}$.

It is basic-set if the map $\mu_{(\nu_1,\dots,\nu_t)}: \nu \to \mu(\nu(\nu_1,\dots,\nu_t))$ is injective.

It is basic-set if the map $\mu_{(\nu_1,\dots,\nu_t)}: \nu \to \mu(\nu(\nu_1,\dots,\nu_t))$ is injective.

Definition

A partition decorated by an operad \mathcal{O} is a partition $\pi = \{\pi_1, \ldots, \pi_n\}$ with a choice for each part π_i of a $\pi_i^{\mathcal{O}} \in \mathcal{O}(\pi_i)$

It is basic-set if the map $\mu_{(\nu_1,\ldots,\nu_t)}:\nu\to\mu(\nu(\nu_1,\ldots,\nu_t))$ is injective.

Definition

A partition decorated by an operad \mathcal{O} is a partition $\pi = \{\pi_1, \ldots, \pi_n\}$ with a choice for each part π_i of a $\pi_i^{\mathcal{O}} \in \mathcal{O}(\pi_i)$

Example

- $\mathcal{O} = \text{Comm} \rightsquigarrow$
- $\mathcal{O} = \mathsf{Ass} \rightsquigarrow$
- $\mathcal{O} = \mathsf{Lie} \rightsquigarrow$

It is basic-set if the map $\mu_{(\nu_1,\ldots,\nu_t)}:\nu\to\mu(\nu(\nu_1,\ldots,\nu_t))$ is injective.

Definition

A partition decorated by an operad \mathcal{O} is a partition $\pi = \{\pi_1, \ldots, \pi_n\}$ with a choice for each part π_i of a $\pi_i^{\mathcal{O}} \in \mathcal{O}(\pi_i)$

Example

• $\mathcal{O} = \text{Comm} \rightsquigarrow \text{usual partition poset}$

•
$$\mathcal{O} = \mathsf{Ass} \rightsquigarrow$$

 $\bullet \ \mathcal{O} = \mathsf{Lie} \leadsto$

It is basic-set if the map $\mu_{(\nu_1,\ldots,\nu_t)}:\nu\to\mu(\nu(\nu_1,\ldots,\nu_t))$ is injective.

Definition

A partition decorated by an operad \mathcal{O} is a partition $\pi = \{\pi_1, \dots, \pi_n\}$ with a choice for each part π_i of a $\pi_i^{\mathcal{O}} \in \mathcal{O}(\pi_i)$

Example

- $\mathcal{O} = \text{Comm} \rightsquigarrow \text{usual partition poset}$
- $\mathcal{O} = \mathsf{Ass} \rightsquigarrow \mathsf{poset}$ of partition with ordered parts
- $\mathcal{O} = \mathsf{Lie} \rightsquigarrow$

It is basic-set if the map $\mu_{(\nu_1,\ldots,\nu_t)}:\nu\to\mu(\nu(\nu_1,\ldots,\nu_t))$ is injective.

Definition

A partition decorated by an operad \mathcal{O} is a partition $\pi = \{\pi_1, \dots, \pi_n\}$ with a choice for each part π_i of a $\pi_i^{\mathcal{O}} \in \mathcal{O}(\pi_i)$

Example

- $\mathcal{O} = \text{Comm} \rightsquigarrow \text{usual partition poset}$
- $\mathcal{O} = \mathsf{Ass} \rightsquigarrow \mathsf{poset}$ of partition with ordered parts
- $\mathcal{O} = \text{Lie} \rightsquigarrow \text{it is not a set operad } !$

0 0 3 0

Generalized partition poset [Vallette 07]

 $\Pi_{\mathcal{O}}$

$\pi^{\mathcal{O}} = \{\pi_1^{\mathcal{O}}, \dots, \pi_k^{\mathcal{O}}\} \leq \{\mu_1^{\mathcal{O}}, \dots, \mu_p^{\mathcal{O}}\} = \mu^{\mathcal{O}}$ \Leftrightarrow $\pi_i^{\mathcal{O}} = \mu(\nu(\mu_{i_1}, \dots, \mu_{i_{n_i}}))$

Example for $\mathcal{O} = Assoc$ (1547)(62)(38) \leq (62154738), (38621547), ... \leq (15642738)

Theorem (Vallette 07)

Operad \mathcal{O} is Koszul if and only if each subposet $[\alpha, \hat{1}]$ of each $\Pi_{\mathcal{O}}(n)$ is Cohen-Macaulay for $\alpha \in \mathcal{O}(\{1, \ldots, n\})$.

$\bigcirc \bigcirc \bigcirc$

Question ?

Question

To which poset property correspond PBW property ?

Partition poset Π_4

Our answer to the question

Outline

Posets and associated structures

2 Shuffle operads and PBW basis

Operadic Partition Posets

- Main theorem
- Counter-example

\circ \circ \circ 4

Main theorem

Theorem (B.M.-D.0.-H., 21)

 $\begin{array}{l} \widetilde{\mathcal{P}} = \textit{quadratic basic-set operad} \\ \Pi_{\widetilde{\mathcal{P}}} = \textit{operadic partition posets} \\ \Pi_{\widetilde{\mathcal{P}}}^{(d)} = \{\lambda \in \mathcal{P} : \exists \nu \in \widetilde{\mathcal{P}}^{(d)} \textit{ such that } \lambda \leqslant \bar{\nu} \} \textit{ admit CL-labellings compatible with isomorphisms of subposets} \end{array}$

↓

Then, the algebraic operad $\mathcal{P} = \mathcal{T}(E)/(R)$ associated to $\widetilde{\mathcal{P}}$ admits a PBW basis with a partial order.

Let us detail our order !

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 4$

Adjacent chains

Two maximal chains are adjacent if they only differs by two edges.

\circ \circ \circ 4

Exchange relation

Exchange relation between $\tilde{a} = \nu^1 \circ_{i_1} \nu^2 \circ_{i_2} \cdots \circ_{i_{l-1}} \nu^l$ and $\tilde{b} = \mu^1 \circ_{j_1} \mu^2 \circ_{j_2} \cdots \circ_{j_{m-1}} \mu^m$ in $\mathcal{N}(E)$ if $\pi(\tilde{a}) = \pi(\tilde{b})$ and if there exists $k \in [\![1, l-1]\!]$ such that $\nu^s = \mu^s$ and $i_s = j_s$ for all $s \in [\![1, l]\!] \setminus \{k, k+1\}$.

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 4$

Definition of the partial order

Definition

For $a, b \in \mathcal{T}(E)$, $a \neq b$,

a < b if there exist two adjacent chains $\tilde{a} = r \cdot (g < x < h) \cdot s$ and $\tilde{b} = r \cdot (g < y < h) \cdot s$ such that:

- $a = \pi(\tilde{a})$ and $b = \pi(\tilde{b})$,
- the CL-labelling given by $\lambda_r^{g, h}$ of the chain (g < x < h) is the unique increasing chain (minimal in the lexicographic order) in this interval.

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 4$

Definition of the partial order

Definition

For $a, b \in \mathcal{T}(E)$, $a \neq b$,

a < b if there exist two adjacent chains $\tilde{a} = r \cdot (g < x < h) \cdot s$ and $\tilde{b} = r \cdot (g < y < h) \cdot s$ such that:

- $a = \pi(\tilde{a})$ and $b = \pi(\tilde{b})$,
- the CL-labelling given by $\lambda_r^{g, h}$ of the chain (g < x < h) is the unique increasing chain (minimal in the lexicographic order) in this interval.

Lemma

 \lt is anti-symmetric as soon as $\Pi_{\widetilde{\mathcal{P}}}$ admit CL-labellings compatible with the isomorphisms of subposets (iso-CL-labellings).

\circ \circ \circ 4

Lemma

 $\Pi_{\widetilde{\mathcal{P}}}$ admit iso-CL-labellings. The reflexive and transitive closure of the relation \lt , denoted by \leqslant , satisfies that

 $a < b \implies \min\left(\{\tilde{a}|\pi(\tilde{a}) = a\}\right) <_{lex} \min\left(\{\tilde{b}|\pi(\tilde{b}) = b\}\right),$

where

- <_{lex} = lexicographic order on chains,
- min is the minimum for <_{lex},
- only maximal chains.

Hence, \leq is a well-defined partial order.

Minimal elements : *a* s.t. one of its representatives is the minimal increasing chain in the interval.

\circ \circ \circ 4

Main theorem

Theorem

 $\begin{array}{l} \widetilde{\mathcal{P}} = \textit{quadratic basic-set operad} \\ \Pi_{\widetilde{\mathcal{P}}} = \textit{operadic partition posets} \\ \left\{ \Pi_{\widetilde{\mathcal{P}}}^{(d)} \right\}_d \textit{admit CL-labellings compatible with isomorphisms of subposets} \end{array}$

↓

Then, the algebraic operad $\mathcal{P} = \mathcal{T}(E)/(R)$ associated to $\widetilde{\mathcal{P}}$ admits a PBW basis with a partial order.

Recover usual PBW basis for Comm and Perm.

Counter-example to the converse

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 4$

Consider the algebra on 13 generators: *a*, *b*, *d*, *e*, *f*, *h*, *i*, *j*, *k*, *l*, *n*, *o*, *p*, with relations given as follows.

ba = ed	ea = fb
hb = id	jb = kd
oi = pk	ej = ph
le = ek = pi	nf = oh = pj

Thank you very much for your attention !