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In this talk:
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n-category = w-category with only unit cells above dimension n
1-category = (small) category
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Starting point: Street's orientals
O: A — wCat.

In pictures:
OO = e,
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Nerve of w-categories

Definition

The nerve of an w-category C is the simplicial set

N, (C) : AP — Set
[n] — Homycat(Oh, C).
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Nerve of w-categories

Definition

The nerve of an w-category C is the simplicial set

N, (C) : AP — Set
[n] = Homycat(On, C).

This yields the nerve functor for w-categories

N, - wCat — A
C— N,(C).

When C is a (1-)category, N, (C) is nothing but the usual nerve of C.
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Singular homology

Recall that to each simplicial set X, we can associate a chain complex
K(X) = ZXo — ZXy +— ZXp — -+~

which allows to define the homology groups of X as the homology groups
of the chain complex K(X).
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Singular homology

Recall that to each simplicial set X, we can associate a chain complex
K(X) = ZXo — ZXy +— ZXp — -+~

which allows to define the homology groups of X as the homology groups
of the chain complex K(X).

Definition

Let C be an w-category. The singular homology groups of C are the
homology groups of its nerve N, (C).
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Polygraphs

Definition

An w-category is free on a polygraph if it can be obtained recursively from
the empty category by freely attaching cells.

Example of w-categories free on a polygraph: the orientals.

Important fact

If C is a w-category free on a polygraph, then there is a unique set of
generating cells possible.

Terminological convention:

polygraph = w-category free on a polygraph.
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Polygraphic homology

Let C be a w-category free on a polygraph and write X for its set of
generating k-cells.
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Polygraphic homology

Let C be a w-category free on a polygraph and write X for its set of
generating k-cells.

Definition

The polygraphic homology of C is the homology of the chain complex

75027y, L7y, 2.,
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Polygraphic homology

Let C be a w-category free on a polygraph and write X for its set of
generating k-cells.

The polygraphic homology of C is the homology of the chain complex
Z5o & 735, 75,
where for x € X,,, we have

9(x) = “generators in the target of X" — “generators in the source of x".

<

Intuition?

Polygraphs = CW-complexes
Polygraphic homology = cellular homology

(Remark: Later we will see how to define polygraphic homology for all
w-categories, not just polygraphs.)
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Polygraphic homology vs singular homology

A natural question:

Let C be a w-category (free on a polygraph). Do we have
HEO(C) ~ HE™e(C) ?
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Polygraphic homology vs singular homology

A natural question:

Let C be a w-category (free on a polygraph). Do we have
HEO(C) ~ HE™e(C) ?

Short answer: Not always. It depends on C.

(Hence, polygraphic homology doesn't work as well as cellular homology of
CW-complexes.)
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Ara and Maltsiniotis" counter-example
Let B be the 2-polygraph

- one object: e,

- one generating 2-cell: 1, = 1,.
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- one generating 2-cell: 1, = 1,.

B = °

We have
Z ifk=0,2
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HP(B) ~ {

But (the nerve) of B has the homotopy type of a K(Z,2), hence HEing(B)
is non-trivial for all even values of k.
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Ara and Maltsiniotis" counter-example

Let B be the 2-polygraph
- one object: e,

- one generating 2-cell: 1, = 1,.

B = °
We have
Z ifk=0,2
0 otherwise.

HP(B) ~ {

But (the nerve) of B has the homotopy type of a K(Z,2), hence HEing(B)
is non-trivial for all even values of k.

Conclusion : .
HE(B) ¢ Ha®(B) for p > 2.

8/41



However, as we shall see, there are tons of examples of w-categories for
which singular homology and polygraphic homology do coincide.
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However, as we shall see, there are tons of examples of w-categories for
which singular homology and polygraphic homology do coincide.

The fundamental question
For which w-categories C do we have HE®'(C) ~ HJ™8(C) ?

This is what | tried to answer in my PhD.

9/41
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Homotopy theory: quick recollection

To define a "homotopy theory”, one needs a category C and a class W of
morphisms of C, usually referred to as the weak equivalences.
When so, we can construct the homotopy category

Ho™Y(C) or simply Ho(C),

which is the localization of C with respect to W.
Intuition: Ho(C) is the category of objects of C “up to morphisms of W".

Remark: Usually, we'll have more than just C and W (for example a model
structure); but not always.

10/41



Thomason homotopy theory

Definition

A morphism f: C — D of wCat is a Thomason equivalence if
Ny (f): Ny(C) — N,(D) is a weak equivalence of simplicial sets.
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Thomason homotopy theory

Definition

A morphism f: C — D of wCat is a Thomason equivalence if
Ny(f): Ny(C) — N,(D) is a weak equivalence of simplicial sets.

Let us write
Ho(wCat™) := localization of wCat w.r.t Thomason equivalences
= “w-categories up to Thomason equivalences.”
Ho(A) := localization of A w.r.t weak equivalences of simplicial sets

= “simplicial sets up to weak equivalences.”
By definition, the nerve functor induces

N, : Ho(wCat™) — ’Ho(ﬁ).
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Theorem (Gagna, 2018)

N, : Ho(wCat™) — Ho(A) is an equivalence of categories (or better an
equivalence of derivators, or of weak (o0, 1)-categories).

12/41



w-categories as spaces

Theorem (Gagna, 2018)

N, : Ho(wCat™) — Ho(A) is an equivalence of categories (or better an
equivalence of derivators, or of weak (o0, 1)-categories).

In other words:

Homotopy theory of w-categories induced by Thomason equivalences

~

Homotopy theory of spaces.

12/41



w-categories as spaces

Theorem (Gagna, 2018)

N, : Ho(wCat™) — Ho(A) is an equivalence of categories (or better an
equivalence of derivators, or of weak (o0, 1)-categories).

In other words:

Homotopy theory of w-categories induced by Thomason equivalences

~

Homotopy theory of spaces.

Hence,

Singular homology of w-categories

~

(Singular) homology of spaces.
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An w-functor f: C — D is an equivalence of w-categories if :
e f is essentially surjective (on 0-cells) up to a “reversible cell”,

e for all O-cells x, y of C, the w-functor

Hom(x,y) — Homp(f(x), f(y))

is an equivalence of w-categories.
(Co-inductive definition.)
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Folk homotopy theory: Equivalence of w-categories

Definition

An w-functor f: C — D is an equivalence of w-categories if :
e f is essentially surjective (on 0-cells) up to a “reversible cell”,

e for all O-cells x, y of C, the w-functor
Hom(x, y) — Homp(f(x), f(y))

is an equivalence of w-categories.
(Co-inductive definition.)

V.

Example: When C and D are (1-)categories, we recover the usual notion of
equivalence of categories.
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Globes and spheres

For every n € N,
- let D, be the “n-globe” w-category:

7N
DO = e, D2 = o \l/ﬂ o,
N
D=0 — e, D3 = 0@3 o,
N A
etc.
- let S,—1 be the “(n — 1)-sphere” w-category:
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Globes and spheres

For every n € N,
- let D, be the “n-globe” w-category:

7N

Dy = o, P2 \¥ﬂ/\ >
N

D=0 — e, D3 = 0@3 o,
N A

etc.
- let S,—1 be the “(n — 1)-sphere” w-category:

S Y

_ 1= .
S—l - ®7 \\_/\
VAN
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Globes and spheres

For every n € N,
- let D, be the “n-globe” w-category:

7N

Dy = o, P2 i/\ >
N

D=0 — e, D3 = 0«(3 o,
N A

etc.
- let S,—1 be the “(n — 1)-sphere” w-category:

S Y

_ 1= .
S—l - ®7 \\/\
VAN

Sp= e . So= e @ Q) °.
N A

etc.

- let ip:S,_1 — D, be the “boundary” inclusion.
14/41



The folk model structure

Theorem (Lafont,Métayer, Worytkiewicz - 2010)

There exists a model structure on wCat such that:
e the weak equivalences are the equivalences of w-categories,

e the set {i,: Sp—1 — Dp|n € N} is a set of generating cofibrations.
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The folk model structure

Theorem (Lafont,Métayer, Worytkiewicz - 2010)

There exists a model structure on wCat such that:

e the weak equivalences are the equivalences of w-categories,

e the set {i,: Sp—1 — Dp|n € N} is a set of generating cofibrations.

It is known as the folk model structure on wCat.

Theorem (Métayer - 2008)
The cofibrant objects of the folk model structure are exactly the
polygraphs.

15 /41
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equivalences and F : C — C’ a functor.
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Derived functors: quick recollection

Let (C,W) and (C’, W') be two categories equipped with weak
equivalences and F : C — C’ a functor.

Best case scenario: F preserves weak equivalences, thus it induces a
canonical functor

F : Ho(C) — Ho(C'),

such that the square
c—F ¢

Ho(C) —F— Ho(C')

is commutative.
Usual scenario: F does not preserves weak equivalences, but we can still
construct a functor Ho(C) — Ho(C').
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Derived functors: quick recollection

Definition

Let (C,W) and (C', ') be two categories equipped with weak equivalences
and F : C — C’ a functor. The functor F is left derivable if there exists a
functor LF : Ho(C) — Ho(C’) and a natural transformation «

C 4/
HO(C ? HO(C’

C/

which are universal among such squares.
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Derived functors: quick recollection

Let (C,W) and (C', ') be two categories equipped with weak equivalences
and F : C — C’ a functor. The functor F is left derivable if there exists a

functor LF : Ho(C) — Ho(C’) and a natural transformation «

C 4/
HO(C T HO(C’

C/

which are universal among such squares.The functor ILF is referred to as
the left derived functor of F.

Model category theory provides tools to compute derived functors.

17 /41



Abelianization of w-categories
Recall that there is a functor
A wCat — Chzo,

referred to as the abelianization functor. For an w-category C, the chain
complex A\(C) is defined as:

AN C)p = ZCp,/~, where ~ is generated by
X t)/’v X+ y,

whenever x and y are k-composable,
0 : MC)p — A(C)p—1 is the only linear map such that

A(x) = t(x) —s(x)

for every n-cell x.
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Abelianization of w-categories
Recall that there is a functor
A wCat — Chzo,

referred to as the abelianization functor. For an w-category C, the chain
complex A\(C) is defined as:

AN C)p = ZCp,/~, where ~ is generated by
Xxy Xty
whenever x and y are k-composable,
0 : MC)p — A(C)p—1 is the only linear map such that
I(x) = t(x) = s(x)

for every n-cell x.

Important: When C is a polygraph, A\(C) is exactly the chain complex used
to compute the polygraphic homology of C.

18 /41



Polygraphic homology as derived functor

Ho(Ch>p) := localization of Ch>g with respect to quasi-isomorphisms.
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Polygraphic homology as derived functor

Ho(Ch>p) := localization of Ch>g with respect to quasi-isomorphisms.

Proposition (folklore ?)

The functor X : wCat — Chxg is left Quillen w.r.t the folk model structure
on wCat and the projective model structure on Chxg.

In particular it is left derivable
LA #o(wCat™®) — Ho(Chso).

Moreover, for every w-category C (free on a polygraph) and every k > 0,
we have

HP (C) = Hi (LAPR(C)).
From now on, we define the polygraphic homology functor HP°! as:
HPO! = LA Ho(wCat™*) — Ho(Chso).
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Polygraphic homology for all

Note: We have extended the definition of polygraphic homology from
polygraphs to all w-categories. When an w-category C is not a polygraph,
it suffices to a take cofibrant replacement (=polygraphic resolution) of C.
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Polygraphic homology for all

Note: We have extended the definition of polygraphic homology from
polygraphs to all w-categories. When an w-category C is not a polygraph,

it suffices to a take cofibrant replacement (=polygraphic resolution) of C.
For example:

Proposition (Lafont,Métayer-2009)

Let M be a monoid (considered as an w-category). We have

HPO (M) ~ HS™8( ).

Historically, this was the motivation for polygraphic homology.

20/41



Singular homology as a derived functor

Theorem (G. - 2020)

The functor X\: wCat — Chxg is left derivable w.r.t the Thomason
equivalences on wCat

LATE: Ho(wCat™) — Ho(Chso),

and for every w-category C and every k > 0, we have

HYE(C) = H(LATR(C)).
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Singular homology as a derived functor

Theorem (G. - 2020)

The functor X\: wCat — Chxg is left derivable w.r.t the Thomason
equivalences on wCat

LATE: Ho(wCat™) — Ho(Chso),
and for every w-category C and every k > 0, we have

HYE(C) = H(LATR(C)).

From now on, we define the singular homology functor H58 as
H5e = LATE: Ho(wCat™) — Ho(Chso).

Conclusion: The polygraphic homology and the singular homology are
obtained as left derived functors of the same functor, but not w.r.t to the
same weak equivalences !

21/41



Table of Contents

@ Comparison of homologies



Equivalence of w-categories vs Thomason equivalences

Important Lemma
Every equivalence of w-categories is a Thomason equivalence.
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Important Lemma

Every equivalence of w-categories is a Thomason equivalence.

Consequence: the identity functor id : wCat — wCat induces a functor
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Equivalence of w-categories vs Thomason equivalences

Important Lemma

Every equivalence of w-categories is a Thomason equivalence.

Consequence: the identity functor id : wCat — wCat induces a functor
J - Ho(wCat™®) — Ho(wCat™h).
Remark: The converse of the above lemma is false. For example
D1 — Dy

is a Thomason equivalence but not an equivalence of w-categories.

22/41



Canonical comparison map

Proposition (abstract non-sense)

There is a canonical natural transformation

Ho(wCat™k)

| e

Ho(wCat™) —sme Ho(Cho).
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Canonical comparison map

Proposition (abstract non-sense)

There is a canonical natural transformation

Ho(wCat™k)

| e

Ho(wCat™) —sme Ho(Cho).

In other words, for every w-category C we have a map
mc  HYM8(C) — HPOY(C),

which is natural in C. We refer to it as the canonical comparison map.
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Homologically coherent w-categories

Definition

An w-category C is homologically coherent if the map
Tc: HSing(C) N Hfolk(c)

is an isomorphism.
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Homologically coherent w-categories

Definition
An w-category C is homologically coherent if the map

Tc: HSing(C) N Hfolk(c)

is an isomorphism.

Goal: Understand which w-categories are homologically coherent.
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Polygraphic homology is not homotopical

Another formal consequence of the formalism of left derived functors:

Proposition (abstract non-sense)

There exists at least one Thomason equivalence u : C — D such that the
induced morphism

HPY(C) — HP°Y(D)

is not an isomorphism.
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Polygraphic homology is not homotopical
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Polygraphic homology is not homotopical

Another formal consequence of the formalism of left derived functors:

Proposition (abstract non-sense)

There exists at least one Thomason equivalence u : C — D such that the
induced morphism
HPY(C) — HP°Y(D)

is not an isomorphism.

In other words, if we think of w-categories as models for homotopy types,
then the polygraphic homology is not a well-defined invariant!

New slogan

The polygraphic homology is a way of computing the singular homology of
homologically coherent w-categories.
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Side note: equivalence of homologies in low dimension

Proposition

Let C be any w-category. The canonical comparison map induces an

isomorphism . 1
1n, O
H™8(C) = H(C)

for k=0,1.
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Side note: equivalence of homologies in low dimension

Proposition

Let C be any w-category. The canonical comparison map induces an

isomorphism . 1
1n, O
H™8(C) = H(C)

for k=0,1.

For all k > 4, it is possible to find a C such that

HEN(C) o HI™E(C).

Open question:

Do we have .
HPH(C) ~ H™8(C)

for k = 2,3, for any w-category C ?
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Homotopy colimits: quick recollection

Let C be a category equipped with weak equivalences W, and | a small
category.
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Let F,F’: | — C be two functors. A natural transformation o : F — F' is
a pointwise weak equivalence if for every object i of /, the morphism

a; 2 F(i) = F'(i)

is in W.

We equip the category C' of functors from I to C with the class of
pointwise weak equivalences.
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Homotopy colimits: quick recollection

Let C be a category equipped with weak equivalences W, and | a small
category.

Definition

We say that C has homotopy colimits (with respect to W) of shape [ if the
colimit functor
Collim Cl ¢

is left derivable.

We use the notation
hoc?lirn : Ho(C') — Ho(C)

for the left derived functor.
Similarly to usual category theory, in homotopy theory there is a notion of
functors that preserves homotopy colimits.

28 /41



An abstract criterion to detect homological coherence

Back to the triangle:

Ho(wCat™lk)

B
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Back to the triangle:

Ho(wCat™lk)

B

Fundamental observation:
HPO! and H52 preserve homotopy colimits but 7 does not in general.

In other words, for a diagram d : I — wCat, the canonical map

Th folk
hOC(I)lim(d) — hoc?lim( d)

is not an isomorphism in general.
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An abstract criterion to detect homological coherence

Back to the triangle:

Ho(wCat™lk)

B

Fundamental observation:
HPO! and H52 preserve homotopy colimits but 7 does not in general.

In other words, for a diagram d : I — wCat, the canonical map

Th folk
hOC(I)lim(d) — hoc?lim( d)

is not an isomorphism in general.

Idea: exploit that sometimes it is an isomorphism.
29 /41
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Let C be an w-category. Suppose that there exists d : | — wCat such that:
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An abstract criterion to detect homological coherence

Let C be an w-category. Suppose that there exists d : | — wCat such that:

folk Th
(i) hOC(I)lim(d) = hoc?lim(d) = (€

(ii) for each i € Ob(/), the w-category d(i) is homologically coherent.
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An abstract criterion to detect homological coherence

Let C be an w-category. Suppose that there exists d : | — wCat such that:

folk Th
(i) hOC(I)lim(d) = hoc?lim(d) = (€

(ii) for each i € Ob(/), the w-category d(i) is homologically coherent.
Then C is homologically coherent.

30/41



Easy application: homology of globes and spheres

For every n > 0, D, is homologically coherent (easy to prove).
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Easy application: homology of globes and spheres

For every n > 0, D, is homologically coherent (easy to prove). Moreover,
we have

i
Sn—1 — Dn

J’in - J’ (*)

D, —— S,,

(with S_1 = 0). This square is “folk homotopy cocartesian” because iy is a
cofibration.

Exceptional situation:

The image by N, of (x) in A is a cocartesian square of monos, hence

homotopy cocartesian. It follows that square () is “Thomason homotopy
cocartesian”.

By an immediate induction, S, is homologically coherent (and has the
homotopy type of an n-sphere).

31/41



The case of 1-categories

Theorem (G. - 2019)

Every (small) category is homologically coherent.
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The case of 1-categories

Theorem (G. - 2019)

Every (small) category is homologically coherent.

Remark 1: The homology (polygraphic or singular) of a category need not
be trivial above dimension 1.

Remark 2: Extension of Lafont and Métayer's result on the homology of
monoids, but more precise and completely new proof.
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The case of 1-categories

Sketch of proof: Let A be a small category. Recall that

colimA/a ~ A.

acA
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The case of 1-categories

Sketch of proof: Let A be a small category. Recall that

colimA/a ~ A.

acA

Moreover:

e cach A/ais homologically coherent (easy to prove),

Th
. hocoAl\im Ala~ coli}r‘n A/a~ A (From Thomason's homotopy colimit
ac ac

theorem).

The hard part is to show

folk
hocolim A/a ~ colim A/a ~ A.
acA acA

Too long to explain but uses crucially the notion discrete Conduché
w-functors (invented for this purpose).

33/41
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2-categories

We would like to understand which 2-categories are homologically coherent.
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2-categories

We would like to understand which 2-categories are homologically coherent.

For simplification, we focus on 2-categories which are free on a
polygraph.
Archetypal situation to understand: given a cocartesian square

S; —— P

{ ]

Dy — P/

with P and P’ 2-polygraphs, when is it homotopy cocartesian w.r.t the
Thomason equivalences ?

| do not have a general answer to this question...

However, using tools that | don't have time to explain, | know how to
answer this question in many concrete situations.

34 /41



Zoology of 2-categories: basic examples

For n,m >0, let A(;, ») be the 2-polygraph, with one generating 2-cell
whose source is a chain of length m and target a chain of length n:
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Zoology of 2-categories: basic examples

For n,m >0, let A(;, ») be the 2-polygraph, with one generating 2-cell
whose source is a chain of length m and target a chain of length n:

SN
\....../

n

Examples:
- A(l,l) is Dz.
- A(0,0) is the 2-polygraph B from Ara and Maltsiniotis’
counter-example.

35/41



Zoology of 2-categories: basic examples

Proposition

If n4+ m > 0, the 2-category A(n, ) has the homotopy type of a point and
is homologically coherent.
Else, A(p,0) has the homotopy type of a K(Z,?2).
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Zoology of 2-categories: basic examples

Proposition

If n4+ m > 0, the 2-category A(n, ) has the homotopy type of a point and
is homologically coherent.
Else, A(p,0) has the homotopy type of a K(Z,?2).

Remark: not that obvious for m + n = 1.

Example:
(1)

Ao = .

has many non-trivial 2-cells.
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Zoology of 2-categories: variation of spheres

2-category H homologically coherent? ‘ homotopy type
TR
. @)) . yes Sy
Nalo%
TR
. @» . yes S»
%

. j§;2g . yes Sa
Q yes S»
i - e

. no K(Z,2)
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Zoology of 2-categories: Bouquets of spheres

2-category H homologically coherent? ‘ homotopy type
° < “ > ° yes Sa v S,

e — e yes So VvV Sy

o yes S2 vV Sz

A yes So VS
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Zoology of 2-categories: Torus

Let C be the free 2-polygraph generated by

I

A.

>

NI

>
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Zoology of 2-categories: Torus

Let C be the free 2-polygraph generated by

I

A.

>

NI

>

This 2-polygraph has the homotopy type of the torus and is homologically
coherent.
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Bubbles

Definition

A bubble in a 2-category is a non unit 2-cell a whose source and target are
units on a 0-cell.
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Definition

A bubble in a 2-category is a non unit 2-cell @ whose source and target are
units on a 0-cell.

In pictures:
1a =
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Bubbles

Definition

A bubble in a 2-category is a non unit 2-cell @ whose source and target are
units on a 0-cell.

In pictures:
1a =
) @
A ﬂa A or A

Definition

A 2-category is bubble-free if it has no bubbles.

|<
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The bubble-free conjecture

The archetypal example of non bubble-free 2-polygraph is the 2-category B
from Ara and Maltsiniotis’ counter-example.
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exactly the bubble-free ones.
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The bubble-free conjecture

The archetypal example of non bubble-free 2-polygraph is the 2-category B
from Ara and Maltsiniotis’ counter-example.

In all the examples, the 2-polygraphs that are homologically coherent are
exactly the bubble-free ones.

Let C be a 2-polygraph. It is homologically coherent if and only if it is
bubble-free.
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Merci pour votre attention !
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