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Preliminary conventions

In this talk:

ω-category = strict ω-category
n-category = ω-category with only unit cells above dimension n

1-category = (small) category
the functor nCat→ ωCat is an inclusion
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Orientals

Starting point: Street’s orientals

O : ∆→ ωCat.

In pictures:
O0 = •,

O1 = • •,

O2 =

•

• •,

O3 =

•

• •

•

V

•

• •.

•
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Nerve of ω-categories

Definition
The nerve of an ω-category C is the simplicial set

Nω(C ) : ∆op → Set
[n] 7→ HomωCat(On,C ).

This yields the nerve functor for ω-categories

Nω : ωCat→ ∆̂

C 7→ Nω(C ).

Example
When C is a (1-)category, Nω(C ) is nothing but the usual nerve of C .
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Singular homology

Recall that to each simplicial set X , we can associate a chain complex

K (X ) = ZX0 ←− ZX1 ←− ZX2 ←− · · ·

which allows to define the homology groups of X as the homology groups
of the chain complex K (X ).

Definition
Let C be an ω-category. The singular homology groups of C are the
homology groups of its nerve Nω(C ).
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Polygraphs

Definition
An ω-category is free on a polygraph if it can be obtained recursively from
the empty category by freely attaching cells.

Example of ω-categories free on a polygraph: the orientals.

Important fact
If C is a ω-category free on a polygraph, then there is a unique set of
generating cells possible.

Terminological convention:

polygraph = ω-category free on a polygraph.
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Polygraphic homology

Let C be a ω-category free on a polygraph and write Σk for its set of
generating k-cells.

Definition
The polygraphic homology of C is the homology of the chain complex

ZΣ0
∂←− ZΣ1

∂←− ZΣ2
∂←− · · · ,

where for x ∈ Σn, we have

∂(x) = “generators in the target of x” − “generators in the source of x”.

Intuition?

Polygraphs ∼= CW-complexes
Polygraphic homology ∼= cellular homology

(Remark: Later we will see how to define polygraphic homology for all
ω-categories, not just polygraphs.)
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Polygraphic homology vs singular homology

A natural question:

Let C be a ω-category (free on a polygraph). Do we have
Hpol
• (C ) ' HSing

• (C ) ?

Short answer: Not always. It depends on C .
(Hence, polygraphic homology doesn’t work as well as cellular homology of
CW-complexes.)
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Ara and Maltsiniotis’ counter-example

Let B be the 2-polygraph
- one object: •,
- one generating 2-cell: 1• ⇒ 1•.

B = •

We have

Hpol
k (B) '

{
Z if k = 0, 2
0 otherwise.

But (the nerve) of B has the homotopy type of a K (Z, 2), hence HSing
k (B)

is non-trivial for all even values of k .
Conclusion :

Hpol
2p (B) 6' HSing

2p (B) for p ≥ 2.
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However, as we shall see, there are tons of examples of ω-categories for
which singular homology and polygraphic homology do coincide.

The fundamental question

For which ω-categories C do we have Hpol
• (C ) ' HSing

• (C ) ?

This is what I tried to answer in my PhD.
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Homotopy theory: quick recollection

To define a “homotopy theory”, one needs a category C and a class W of
morphisms of C, usually referred to as the weak equivalences.

When so, we can construct the homotopy category

HoW(C) or simply Ho(C),

which is the localization of C with respect to W.
Intuition: Ho(C) is the category of objects of C “up to morphisms of W”.
Remark: Usually, we’ll have more than just C and W (for example a model
structure); but not always.
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Thomason homotopy theory

Definition
A morphism f : C → D of ωCat is a Thomason equivalence if
Nω(f ) : Nω(C )→ Nω(D) is a weak equivalence of simplicial sets.

Let us write

Ho(ωCatTh) := localization of ωCat w.r.t Thomason equivalences
= “ω-categories up to Thomason equivalences.”

Ho(∆̂) := localization of ∆̂ w.r.t weak equivalences of simplicial sets
= “simplicial sets up to weak equivalences.”

By definition, the nerve functor induces

Nω : Ho(ωCatTh)→ Ho(∆̂).
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ω-categories as spaces

Theorem (Gagna, 2018)

Nω : Ho(ωCatTh)→ Ho(∆̂) is an equivalence of categories (or better an
equivalence of derivators, or of weak (∞, 1)-categories).

In other words:

Homotopy theory of ω-categories induced by Thomason equivalences
∼=

Homotopy theory of spaces.

Hence,

Singular homology of ω-categories
∼=

(Singular) homology of spaces.
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Folk homotopy theory: Equivalence of ω-categories

Definition
An ω-functor f : C → D is an equivalence of ω-categories if :

• f is essentially surjective (on 0-cells) up to a “reversible cell”,
• for all 0-cells x , y of C , the ω-functor

HomC (x , y)→ HomD(f (x), f (y))

is an equivalence of ω-categories.
(Co-inductive definition.)

Example: When C and D are (1-)categories, we recover the usual notion of
equivalence of categories.
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Globes and spheres

For every n ∈ N,

- let Dn be the “n-globe” ω-category:

D0 = •,

D1 = • → •,

D2 = • •,

D3 = • •,V

etc.
- let Sn−1 be the “(n − 1)-sphere” ω-category:

S−1 = ∅,

S0 = • •

S1 = • •

S2 = • •.

etc.
- let in : Sn−1 → Dn be the “boundary” inclusion.
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The folk model structure

Theorem (Lafont,Métayer,Worytkiewicz - 2010)
There exists a model structure on ωCat such that:
• the weak equivalences are the equivalences of ω-categories,
• the set {in : Sn−1 → Dn|n ∈ N} is a set of generating cofibrations.

It is known as the folk model structure on ωCat.

Theorem (Métayer - 2008)
The cofibrant objects of the folk model structure are exactly the
polygraphs.
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Derived functors: quick recollection

Let (C,W) and (C′,W ′) be two categories equipped with weak
equivalences and F : C → C′ a functor.

Best case scenario: F preserves weak equivalences, thus it induces a
canonical functor

F : Ho(C)→ Ho(C′),

such that the square
C C′

Ho(C) Ho(C′)

F

F

is commutative.
Usual scenario: F does not preserves weak equivalences, but we can still
construct a functor Ho(C)→ Ho(C′).
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Derived functors: quick recollection

Definition
Let (C,W) and (C′,W ′) be two categories equipped with weak equivalences
and F : C → C′ a functor. The functor F is left derivable if there exists a
functor LF : Ho(C)→ Ho(C′) and a natural transformation α

C C′

Ho(C) Ho(C′)

F

LF

α

which are universal among such squares.

The functor LF is referred to as
the left derived functor of F .

Model category theory provides tools to compute derived functors.
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Abelianization of ω-categories

Recall that there is a functor

λ : ωCat→ Ch≥0,

referred to as the abelianization functor. For an ω-category C , the chain
complex λ(C ) is defined as:

λ(C )n = ZCn/∼, where ∼ is generated by

x ∗
k
y ∼ x + y ,

whenever x and y are k-composable,
∂ : λ(C )n → λ(C )n−1 is the only linear map such that

∂(x) = t(x)− s(x)

for every n-cell x .

Important: When C is a polygraph, λ(C ) is exactly the chain complex used
to compute the polygraphic homology of C .
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Polygraphic homology as derived functor

Ho(Ch≥0) := localization of Ch≥0 with respect to quasi-isomorphisms.

Proposition (folklore ?)
The functor λ : ωCat→ Ch≥0 is left Quillen w.r.t the folk model structure
on ωCat and the projective model structure on Ch≥0.

In particular it is left derivable

Lλfolk : Ho(ωCatfolk)→ Ho(Ch≥0).

Moreover, for every ω-category C (free on a polygraph) and every k ≥ 0,
we have

Hpol
k (C ) ' Hk(Lλfolk(C )).

From now on, we define the polygraphic homology functor Hpol as:

Hpol := Lλfolk : Ho(ωCatfolk)→ Ho(Ch≥0).
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Polygraphic homology for all

Note: We have extended the definition of polygraphic homology from
polygraphs to all ω-categories. When an ω-category C is not a polygraph,
it suffices to a take cofibrant replacement (=polygraphic resolution) of C .

For example:

Proposition (Lafont,Métayer-2009)
Let M be a monoid (considered as an ω-category). We have

Hpol
• (M) ' HSing

• (M).

Historically, this was the motivation for polygraphic homology.
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Singular homology as a derived functor

Theorem (G. - 2020)
The functor λ : ωCat→ Ch≥0 is left derivable w.r.t the Thomason
equivalences on ωCat

LλTh : Ho(ωCatTh)→ Ho(Ch≥0),

and for every ω-category C and every k ≥ 0, we have

HSing
k (C ) = Hk(LλTh(C )).

From now on, we define the singular homology functor HSing as

HSing := LλTh : Ho(ωCatTh)→ Ho(Ch≥0).

Conclusion: The polygraphic homology and the singular homology are
obtained as left derived functors of the same functor, but not w.r.t to the
same weak equivalences !
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Equivalence of ω-categories vs Thomason equivalences

Important Lemma
Every equivalence of ω-categories is a Thomason equivalence.

Consequence: the identity functor id : ωCat→ ωCat induces a functor

J : Ho(ωCatfolk)→ Ho(ωCatTh).

Remark: The converse of the above lemma is false. For example

D1 → D0

is a Thomason equivalence but not an equivalence of ω-categories.
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Canonical comparison map

Proposition (abstract non-sense)
There is a canonical natural transformation

Ho(ωCatfolk)

Ho(ωCatTh) Ho(Ch≥0).

J Hpol

HSing

π

In other words, for every ω-category C we have a map

πC : HSing(C )→ Hpol(C ),

which is natural in C . We refer to it as the canonical comparison map.
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Homologically coherent ω-categories

Definition
An ω-category C is homologically coherent if the map

πC : HSing(C )→ Hfolk(C )

is an isomorphism.

Goal: Understand which ω-categories are homologically coherent.
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Polygraphic homology is not homotopical

Another formal consequence of the formalism of left derived functors:

Proposition (abstract non-sense)
There exists at least one Thomason equivalence u : C → D such that the
induced morphism

Hpol(C )→ Hpol(D)

is not an isomorphism.

In other words, if we think of ω-categories as models for homotopy types,
then the polygraphic homology is not a well-defined invariant!

New slogan
The polygraphic homology is a way of computing the singular homology of
homologically coherent ω-categories.
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Side note: equivalence of homologies in low dimension

Proposition
Let C be any ω-category. The canonical comparison map induces an
isomorphism

HSing
k (C )→ Hpol

k (C )

for k = 0, 1.

For all k ≥ 4, it is possible to find a C such that

Hpol
k (C ) 6' HSing

k (C ).

Open question:
Do we have

Hpol
k (C ) ' HSing

k (C )

for k = 2, 3, for any ω-category C ?
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Homotopy colimits: quick recollection

Let C be a category equipped with weak equivalences W, and I a small
category.

Definition
Let F ,F ′ : I → C be two functors. A natural transformation α : F → F ′ is
a pointwise weak equivalence if for every object i of I , the morphism

αi : F (i)→ F ′(i)

is in W.

We equip the category CI of functors from I to C with the class of
pointwise weak equivalences.
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Homotopy colimits: quick recollection

Let C be a category equipped with weak equivalences W, and I a small
category.

Definition
We say that C has homotopy colimits (with respect to W) of shape I if the
colimit functor

colim
I

: CI → C

is left derivable.

We use the notation

hocolim
I

: Ho(CI )→ Ho(C)

for the left derived functor.
Similarly to usual category theory, in homotopy theory there is a notion of
functors that preserves homotopy colimits.
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An abstract criterion to detect homological coherence

Back to the triangle:

Ho(ωCatfolk)

Ho(ωCatTh) Ho(Ch≥0).

J Hpol

HSing

π

Fundamental observation:
Hpol and HSing preserve homotopy colimits but J does not in general.

In other words, for a diagram d : I → ωCat, the canonical map

Th
hocolim

I
(d)→

folk
hocolim

I
(d)

is not an isomorphism in general.
Idea: exploit that sometimes it is an isomorphism.
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An abstract criterion to detect homological coherence

Proposition
Let C be an ω-category. Suppose that there exists d : I → ωCat such that:

(i)
folk

hocolim
I

(d) '
Th

hocolim
I

(d) ' C ,

(ii) for each i ∈ Ob(I ), the ω-category d(i) is homologically coherent.
Then C is homologically coherent.
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Easy application: homology of globes and spheres

For every n ≥ 0, Dn is homologically coherent (easy to prove).

Moreover,
we have

Sn−1 Dn

Dn Sn,

in

in
p

(∗)

(with S−1 = ∅). This square is “folk homotopy cocartesian” because in is a
cofibration.

Exceptional situation:

The image by Nω of (∗) in ∆̂ is a cocartesian square of monos, hence
homotopy cocartesian. It follows that square (∗) is “Thomason homotopy
cocartesian”.

By an immediate induction, Sn is homologically coherent (and has the
homotopy type of an n-sphere).
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homotopy cocartesian.

It follows that square (∗) is “Thomason homotopy
cocartesian”.

By an immediate induction, Sn is homologically coherent (and has the
homotopy type of an n-sphere).
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The case of 1-categories

Theorem (G. - 2019)
Every (small) category is homologically coherent.

Remark 1: The homology (polygraphic or singular) of a category need not
be trivial above dimension 1.
Remark 2: Extension of Lafont and Métayer’s result on the homology of
monoids, but more precise and completely new proof.
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The case of 1-categories

Sketch of proof: Let A be a small category. Recall that

colim
a∈A

A/a ' A.

Moreover:

• each A/a is homologically coherent (easy to prove),

•
Th

hocolim
a∈A

A/a ' colim
a∈A

A/a ' A (From Thomason’s homotopy colimit

theorem).

The hard part is to show

folk
hocolim

a∈A
A/a ' colim

a∈A
A/a ' A.

Too long to explain but uses crucially the notion discrete Conduché
ω-functors (invented for this purpose).
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2-categories

We would like to understand which 2-categories are homologically coherent.

For simplification, we focus on 2-categories which are free on a
polygraph.
Archetypal situation to understand: given a cocartesian square

S1 P

D2 P ′

i1
p

with P and P ′ 2-polygraphs, when is it homotopy cocartesian w.r.t the
Thomason equivalences ?
I do not have a general answer to this question...
However, using tools that I don’t have time to explain, I know how to
answer this question in many concrete situations.
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Zoology of 2-categories: basic examples

For n,m ≥ 0, let A(m,n) be the 2-polygraph, with one generating 2-cell
whose source is a chain of length m and target a chain of length n:

A(m,n) =

m︷ ︸︸ ︷
• •

• •

• •.

· · ·

· · ·︸ ︷︷ ︸
n

Examples:

- A(1,1) is D2.
- A(0,0) is the 2-polygraph B from Ara and Maltsiniotis’
counter-example.
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Zoology of 2-categories: basic examples

Proposition
If n + m > 0, the 2-category A(m,n) has the homotopy type of a point and
is homologically coherent.
Else, A(0,0) has the homotopy type of a K (Z, 2).

Remark: not that obvious for m + n = 1.
Example:

A(1,0) = •

has many non-trivial 2-cells.
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Zoology of 2-categories: variation of spheres

2-category homologically coherent? homotopy type

• • yes S2

• • yes S2

• • yes S2

• yes S2

• no K (Z, 2)

• no K (Z, 2)
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Zoology of 2-categories: Bouquets of spheres

2-category homologically coherent? homotopy type

• • yes S2 ∨ S2

• • yes S2 ∨ S2

• • • yes S2 ∨ S2

A A yes S2 ∨ S1
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Zoology of 2-categories: Torus

Let C be the free 2-polygraph generated by

A A

A A.

f

g g

f

This 2-polygraph has the homotopy type of the torus and is homologically
coherent.
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Bubbles

Definition
A bubble in a 2-category is a non unit 2-cell α whose source and target are
units on a 0-cell.

In pictures:

A A

1A

1A

α or A.

α

Definition
A 2-category is bubble-free if it has no bubbles.
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The bubble-free conjecture

The archetypal example of non bubble-free 2-polygraph is the 2-category B
from Ara and Maltsiniotis’ counter-example.

In all the examples, the 2-polygraphs that are homologically coherent are
exactly the bubble-free ones.

Conjecture
Let C be a 2-polygraph. It is homologically coherent if and only if it is
bubble-free.
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Merci pour votre attention !


	Introduction
	Homotopy theory of -categories
	Homologies as derived functors
	Comparison of homologies
	Detecting homologically coherent -categories
	The case of 2-categories

